
Natural language template selection for
temporal constraints — Template options

C. Maria Keet

Department of Computer Science, University of Cape Town,
South Africa, mkeet@cs.uct.ac.za

1 Introduction

These introductory notes describe the task, a refresher on the notation of the
semantics of the constraints, and some explanatory notes on how to read the
sample sentences.

Task For each constraint, fill in the corresponding section in the spreadsheet.
The fields that require a value are colour-coded in red. You may either select from
the drop-down list in column E or type ‘yes’, ‘sort of’, or ‘no’ in that column. If
you have a preferred sentence from the options available—where there is more
than one option to choose from—please indicate that with a ‘1’ in column F.
Any comments you may have can be added in column G.

Refresher notes on notation of the semantics We rely on the formal
foundations of ERV T and EER++

V T (with some adjustments to harmonise no-
tation and the extension with mandatory constraints), being the semantics of
DLRUS , so as not to clutter this presentation with too much repetition and
syntax notation. Considering usual model-theoretic semantics, we use here a
temporal interpretation of the signature of a conceptual data model M for this.
This is a structure of the form: I =

(
(Z, <), ∆I , {·I(t) | t ∈ Z}

)
, where (Z, <)

is the set of integers denoting the intended flow of time, ∆I 6= ∅ is the interpre-
tation domain divided into ∆IC over classes and ∆ID over data types, and ·I(t),
for t ∈ Z, is the interpretation function which assigns a set CI(t) ⊆ ∆I to each
entity type C ∈ C, a set RI(t) of tuples over ∆IC ×∆IC to each relation R ∈ R
and a set AI(t) of tuples over ∆IC ×∆ID to each attribute A ∈ A. While DLRUS
permits n-ary relations, we consider here just the case for binaries.

Explanatory notes on the sentences Each element/constraint has an
abbreviation and a name. For most constraints, the semantics are given, with
the others following the same pattern as the others of the same type. Several
constraints also have an example from some hypothetical universe of discourse of
a temporal conceptual model, to help filling in the slots of the template sentences.
So, for instance in the first case, snapshot class (Sc), a sample entity type is
Person, which would then be plugged in into the template at the place of the
“..C1..” slot, resulting in, e.g., “Each Person is always a Person.” for sentence
template (g).

Regarding relationships, while the semantics doesn’t constrain the classes
(does not mention specific entity types), they are always considered in concep-
tual data models, mainly because there is a practice of reusing labels for naming



of relationships (e.g., multiple times ‘has’) so that such context is necessary in
the verbalisation of conceptual models (cf. ontologies). Therefore, we include the
entity types in the templates.

1.1 Basics: snapshot and temporal

(Sc) Snapshot class, o ∈ CI(t) → ∀t′ ∈ T .o ∈ CI(t′); for instance, Person:
(a) If an object is an instance of entity type ..C1.. , then it is a(n) ..C1.. at

all times.
(b) ..C1.. is an entity type whose objects will be a(n) ..C1.. for their whole

existence.
(c) ..C1.. is an entity type whose objects will be a(n) ..C1.. at all times.
(d) ..C1.. is an entity type whose objects will always be a(n) ..C1.. .
(e) ..C1.. is an entity type whose objects are necessarily an instance of ..C1..

.
(f) Each ..C1.. is a(n) ..C1.. at all times.
(g) Each ..C1.. is always a(n) ..C1.. .

(Tc) Temporary class, o ∈ CI(t) → ∃t′ 6= t.o /∈ CI(t′); for instance, Undergradu-

ate Student (assuming they graduate and end up as alumni or drop outs):
(a) If an object is an instance of entity type ..C1.. , then there is some time

where it is not a(n) ..C1.. .
(b) ..C1.. is an entity type whose objects are, for some time in their existence,

not instances of ..C1.. .
(c) ..C1.. is an entity type of which each object is not a(n) ..C1.. for some

time during its existence.
(d) All instances of entity type ..C1.. are not a(n) ..C1.. for some time.
(e) Each ..C1.. is not a(n) ..C1.. for some time.
(f) Each ..C1.. is for some time not a(n) ..C1.. .

(Sr) Snapshot relationship, r ∈ RI(t) → ∀t′ ∈ T .r ∈ RI(t
′). For instance,

Producer produces Movie.
(a) Each fact of ..C1.. ..R1.. ..C2.. persists while the respective participating

instances of ..C1.. and ..C2.. exist.
(b) Each ..C1.. ..R1.. ..C2.. endures indefinitely.

(Tr) Temporal relationship, r ∈ RI(t) → ∃t′ 6= t.r /∈ RI(t′). For instance, Person

married-to Person in a conceptual model for a census database (as there is
assumed to be either a divorce or widowhood at some point).
(a) The objects in the facts in ..C1.. ..R1.. ..C2.. do, at some time, not relate

through ..R1.. .
(b) The objects participating in a fact in ..C1.. ..R1.. ..C2.. do not relate

through ..R1.. at some time.



(Sa) Snapshot attribute, o ∈ CI(t) ∧ 〈o, d〉 ∈ AI(t) → ∀t′ ∈ T .〈o, d〉 ∈ AI(t′);
For instance, Network Card has MAC Address String, where there attribute A1
is has MAC Address. Note that the template would drop ‘has’ if it is already
in the attribute’s name, or it is substituted with the verb in the attribute’s
name:
(a) Each object in entity type ..C1.. having attribute ..A1.. has ..A1.. at all

times.
(b) Each ..C1.. has a(n) ..A1.. and this holds always.
(c) Each ..C1.. has a(n) ..A1.. and objects in ..C1.. always have attribute ..A1..

.
(d) ..C1.. has a(n) ..A1.. and ..C1..s always have a(n) ..A1.. .
(e) A(n) ..C1.. always has a(n) ..A1.. .

(Ta) Temporal attribute, o ∈ CI(t)∧〈o, d〉 ∈ AI(t) → ∃t′ 6= t.〈o, d〉 /∈ AI(t′). For
instance, the temporal counterpart for this constraint with Employee receives

Bonus Integer together with option (e) would generate the sentence ‘An
Employee receives a Bonus, but not always’:
(a) Each object in entity type ..C1.. having attribute ..A1.. does not have

a(n) ..A1.. at some time.
(b) Each ..C1.. has a(n) ..A1.. , but not for some time.
(c) Each ..C1.. has a(n) ..A1.. , but objects in ..C1.. do not always have a(n)

..A1.. .
(d) ..C1.. has a(n) ..A1.. , but ..C1..s do not always have a(n) ..A1.. .
(e) A(n) ..C1.. has a(n) ..A1.. , but not always.

2 Dynamic constraints

2.1 Dynamic constraints for classes

(Dex) Dynamic extension in the future, i.e., o ∈ Dex
I(t)
C1,C2

→ (o ∈ C1
I(t) ∧ o /∈

C2
I(t)∧o ∈ C2

I(t+1)). For instance, Employee may extend dynamically to Manager:
a. A(n) ..C1.. may also become a(n) ..C2.. .
b. A(n) ..C1.. may also be a(n) ..C2.. at a later time.
c. A(n) ..C1.. may also become a(n) ..C2.. at a later time.
d. A(n) ..C1.. may also be a(n) ..C2.. some time in the future.

(DexM) Mandatory Dex, i.e., Dex and ‘source total transition’ apply, meaning
that all objects instantiating C1 will also instantiate C2 at some point in time

in the future: o ∈ DexM
I(t)
C1,C2

→ (o ∈ C1
I(t) → ∃t′ > t.o ∈ Dex

I(t′)
C1,C2

). For
instance, all Top-1 songs of the weekly charts will be added as a AlbumTrack on
the ‘best of’ album of that year:
a. Each ..C1.. must also become a(n) ..C2.. .
b. Each ..C1.. also has to become a(n) ..C2.. .
c. Each ..C1.. has to become a(n) ..C2.. as well.
d. Each ..C1.. will also become a(n) ..C2.. .



e. Each ..C1.. will also be a(n) ..C2.. at a later time.
f. Each ..C1.. will also become a(n) ..C2.. at a later time.
g. Each ..C1.. will also be a(n) ..C2.. some time in the future.

(Dex−) Dynamic extension in the past, i.e., o ∈ Dex−
I(t)
C1,C2

→ (o ∈ C1
I(t) ∧ o /∈

C2
I(t) ∧ o ∈ C2

I(t−1)). For instance, a Manager at a company was already an
Employee at that company:

a. A(n) ..C1.. may have been already a(n) ..C2.. .
b. A(n) ..C1.. may have been a(n) ..C2.. before.
c. A(n) ..C1.. may have been a(n) ..C2.. some time earlier.

(DexM−) Mandatory dynamic extension, past: o ∈ DexM−
I(t)
C1,C2

→ (o ∈
C1
I(t) → ∃t′ < t.o ∈ Dex

I(t′)
C1,C2

). For instance, one can only be a PhD super-

visor if one is a Professor, and all professors are going to have to supervise PhD
students, according to university management.

a. Each ..C1.. must be already a(n) ..C2.. .
b. Each ..C1.. was already a(n) ..C2.. .
c. Each ..C1.. was already a(n) ..C2.. before.
d. Each ..C1.. was already a(n) ..C2.. some time earlier.

(Dev) Dynamic evolution, future, optional: o ∈ Dev
I(t)
C1,C2

→ (o ∈ C1
I(t) ∧ o /∈

C2
I(t)∧ o ∈ C2

I(t+1)∧ o /∈ C1
I(t+1)). For instance, a Caterpillar is expected to turn

into a Butterfly (just not all do in praxis).

a. A(n) ..C1.. may evolve to become a(n) ..C2.. ceasing to be a(n) ..C1.. .
b. A(n) ..C1.. may evolve to ..C2.. afterward, ceasing to be a(n) ..C1.. .

(DevM) Mandatory dynamic evolution, future: o ∈ DevM
I(t)
C1,C2

→ (o ∈ C1
I(t) →

∃t′ > t.o ∈ Dev
I(t′)
C1,C2

). For instance, at a university where each Student eventu-
ally will receive a certificate and thus become an Alumnus (and never study there
again), the constraint for the database may be:

a. Each ..C1.. must evolve to ..C2.. ceasing to be a(n) ..C1.. .
b. Each ..C1.. will evolve to ..C2.. ceasing to be a(n) ..C1.. .
c. Each ..C1.. will evolve to ..C2.. some time in the future, ceasing to be a(n)

..C1.. .

(Dev−) Dynamic evolution, past, optional: o ∈ Dev−
I(t)
C1,C2

→ (o ∈ C1
I(t) ∧ o /∈

C2
I(t)∧o ∈ C2

I(t−1)∧o /∈ C1
I(t−1)). For instance, for a university database: while

it is common now for an Academic to move between universities, some stay at
the same place, or return to, where they have been a PhD student.

a. A(n) ..C1.. may have been a(n) ..C2.. before, but is not a(n) ..C2.. now.
b. If ..C1.. , then ..C1.. may have been a(n) ..C2.. before, but is not a(n) ..C2.. now.



(DevM−) Mandatory dynamic evolution, past: o ∈ DevM−
I(t)
C1,C2

→ (o ∈
C1
I(t) → ∃t′ < t.o ∈ Dev

I(t′)
C1,C2

). For instance, Butterfly and the Caterpillar it
used to be.

a. Each ..C1.. must have been a(n) ..C2.. , but is not a(n) ..C2.. anymore.
b. Each ..C1.. was a(n) ..C2.. before, but is not a(n) ..C2.. now.
c. If ..C1.. , then ..C1.. was a(n) ..C2.. before, but is not a(n) ..C2.. anymore.

(PDex/PDev) Persistent extension or evolution; for instance, once a conference
paper has been published in print, that publication is there for posterity in, say,
Springer’s system. Add at the end of the sentence either one of:

a. <selected Dex/Dev option>, and this remains so.
b. <selected Dex/Dev option>, and this must remain so.
c. <selected Dex/Dev option>, and this remains so indefinitely.
d. <selected Dex/Dev option>, which does not change.

For quantitative extension and evolution, we need a specific number, n for
counting and, implicitly, some time unit to be able to construct, e.g., ‘after at
least 3 years’. The number is denoted in the formalisation as n and the variable
in the template is denoted as “ ..D1..”.

(Qex) Quantitative extension, future, optional, where here and in the following

variants, n ∈ Z and t + n ∈ Tp, and for Qex then: o ∈ Qex
I(t)
C1,C2

→ ∃(t + n) >

t.(o ∈ C1
I(t) ∧ o /∈ C2

I(t) ∧ C2I(t+n)). For instance, an Employee may be promoted
to Manager at that company after 3 years of service.

a. A(n) ..C1.. may also become a(n) ..C2.. after [at least/at most/exactly] ..D1..
.

b. If ..C1.. for [at least/at most/exactly] ..D1.. , then ..C1.. may become a(n)
..C2.. as well.

(QexM) Quantitative extension, future, mandatory: o ∈ Qex
I(t)
C1,C2

→ (o ∈
C1
I(t) → ∃(t+ n) > t.o ∈ Qex

I(t+n)
C1,C2

). For instance, all Students have to do some
Volunteer service in the second year of their study.

a. Each ..C1.. will also become a(n) ..C2.. after [at least/at most/exactly] ..D1..
.

b. If ..C1.. for [at least/at most/exactly] ..D1.. , then ..C1.. becomes a(n) ..C2..
as well.

(Qex−) Quantitative extension, past, optional, where the past counterpart is
similar to the future, but then t− n.

a. A ..C1.. may already have been a(n) ..C2.. for [at least/at most/exactly] ..D1.. .

(QexM−) Quantitative extension, past, mandatory, where the past counterpart
is similar to the future, but then t′ < t:



a. Each ..C1.. was already a(n) ..C2.. for [at least/at most/exactly] ..D1.. .

(Qev) Quantitative evolution, future:

o ∈ Qev
I(t)
C1,C2

→ ∃(t+n) > t.(o ∈ C1
I(t)∧o /∈ C2

I(t)∧o ∈ C2
I(t+n)∧o /∈ C1

I(t+n)).
For instance, a non-tenured prof may have met the criteria and thus be confirmed
as a Associate Prof after 6 years.
a. A ..C1.. may progress to a(n) ..C2.. after [at least/at most/exactly] ..D1.. ,

ceasing to be a(n) ..C1.. .

(QevM) Quantitative evolution, future, mandatory): For instance, the fantasy
world where all non-tenured profs will get that coveted job of associate prof after 6
years in the tenure track.
a. Each ..C1.. must progress to a(n) ..C2.. after [at least/at most/exactly] ..D1..

, ceasing to be a(n) ..C1.. .

(Qev−) Quantitative evolution, past, optional:
a. A(n) ..C1.. may have been a(n) ..C2.. before for [at least/at most/exactly]

..D1.. , but is not now.

(QevM−) Quantitative evolution, past, mandatory:
a. Each ..C1.. was a(n) ..C2.. before for [at least/at most/exactly] ..D1.. , but is

not now.

2.2 Dynamic constraints for relationships

(RDex) – Dynamic extension of a relationship, 〈o, o′〉 ∈ RDex
I(t)
R1,R2

→ (〈o, o′〉 ∈
R1
I(t) → ∃t′ > t.〈o, o′〉 ∈ R2

I(t′)). For instance, a Person has made a booking for a
Flight, and then that person does a check-in for that flight some time afterward.
a. ..C1.. ..R1.. ..C2.. may be followed by ..C1.. ..R2.. ..C2.. .

(RDexM) – Dynamic extension for relationships, mandatory,

〈o, o′〉 ∈ RDexM
I(t)
R1,R2

→ (〈o, o′〉 ∈ R1
I(t) → ∃t′ > t.〈o, o′〉 ∈ RDex

I(t′)
R1,R2

)
a. Each ..C1.. ..R1.. ..C2.. is followed by ..C1.. ..R2.. ..C2.. .
b. Each ..C1.. ..R1.. ..C2.. will be followed by ..C1.. ..R2.. ..C2.. .
c. Each ..C1.. ..R1.. ..C2.. must be followed by ..C1.. ..R2.. ..C2.. .

(RDex−) – Dynamic extension for relationships, past, optional, with semantics:

〈o, o′〉 ∈ RDex−R1,R2

I(t) → (〈o, o′〉 ∈ R1
I(t) → ∃t′ < t.〈o, o′〉 ∈ R2

I(t′)).
a. ..C1.. ..R1.. ..C2.. may be preceded by ..C1.. ..R2.. ..C2.. .

(RDexM−) – Dynamic extension for relationships, past, mandatory:

〈o, o′〉 ∈ RDexM−R1,R2

I(t) → (〈o, o′〉 ∈ R1
I(t) → ∃t′ < t.〈o, o′〉 ∈ RDex−R1,R2

I(t′)
).

For instance, every passenger who boards a flight must have checked in.
a. Each ..C1.. ..R1.. ..C2.. is preceded by ..C1.. ..R2.. ..C2.. .



b. Each ..C1.. ..R1.. ..C2.. must be preceded by ..C1.. ..R2.. ..C2.. .

(RDev) – Dynamic evolution for relationships, future, optional:

〈o, o′〉 ∈ RDev
I(t)
R1,R2

→ (〈o, o′〉 ∈ R1
I(t) → ∃t′ > t.〈o, o′〉 ∈ R2

I(t′) ∧ 〈o, o′〉 /∈
R1
I(t′)). For instance, a marriage between two persons may end up in a divorce

of those two persons.

a. ..C1.. ..R1.. ..C2.. may be followed sequentially by ..C1.. ..R2.. ..C2.. .
b. ..C1.. ..R1.. ..C2.. may be followed by ..C1.. ..R2.. ..C2.. , ending ..C1.. ..R1.. ..C2.. .

(RDevM) – Dynamic evolution for relationships, future, mandatory:

〈o, o′〉 ∈ RDevM
I(t)
R1,R2

→ (〈o, o′〉 ∈ R1
I(t) → ∃t′ > t.〈o, o′〉 ∈ RDev

I(t′)
R1,R2

). For
instance, there may be a business rule that every CEO that works for a Company

is going to be an Advisor who advises the Board of that company once they step
down as CEO.

a. Each ..C1.. ..R1.. ..C2.. must be followed by ..C1.. ..R2.. ..C2.. successively.
b. Each ..C1.. ..R1.. ..C2.. is followed sequentially by ..C1.. ..R2.. ..C2.. .
c. Each ..C1.. ..R1.. ..C2.. must be followed by ..C1.. ..R2.. ..C2.. , ending ..C1..

..R1.. ..C2.. .
d. Each ..C1.. ..R1.. ..C2.. will be followed by ..C1.. ..R2.. ..C2.. , terminating the

..C1.. ..R1.. ..C2.. relation.

(RDev−) – Dynamic evolution for relationships, past, optional: 〈o, o′〉 ∈ RDev−R1,R2

I(t) →
(〈o, o′〉 ∈ R1

I(t) → ∃t′ < t.〈o, o′〉 ∈ R2
I(t′) ∧ 〈o, o′〉 /∈ R1

I(t′)). For instance, books
on restricted loan from a library may have been on regular loan from that library
(e.g., a book is a high-in-demand textbook for a course in the semester, or it is
from a special collection to begin with).

a. ..C1.. ..R1.. ..C2.. may have been sequentially preceded by ..C1.. ..R2.. ..C2.. .
b. ..C1.. ..R1.. ..C2.. may have been preceded by ..C1.. ..R2.. ..C2.. and they are

not in that ..C1.. ..R2.. ..C2.. relation now.
c. ..C1.. ..R1.. ..C2.. may have been be preceded by ..C1.. ..R2.. ..C2.. , observing

they do not occur concurrently for any pair of objects.
d. If ..C1.. ..R1.. ..C2.. , then it may have been preceded by ..C1.. ..R2.. ..C2.. , but

..C1.. and ..C2.. are not in that ..R2.. relation anymore.

(RDevM−) – Dynamic evolution for relationships, past, mandatory: 〈o, o′〉 ∈
RDevM−R1,R2

I(t) → (〈o, o′〉 ∈ R1
I(t) → ∃t′ < t.〈o, o′〉 ∈ RDev−R1,R2

I(t′)
). For

instance, the check-in to a flight surely occurred before boarding, and any pair of
humans who are divorced were married before that.

a. Each ..C1.. ..R1.. ..C2.. is strictly preceded by ..C1.. ..R2.. ..C2.. .
b. Each ..C1.. ..R1.. ..C2.. is preceded by ..C1.. ..R2.. ..C2.. and they are not in

that ..C1.. ..R2.. ..C2.. relation anymore.
c. If ..C1.. ..R1.. ..C2.. , then it was preceded by ..C1.. ..R2.. ..C2.. and they are

not in that ..C1.. ..R2.. ..C2.. relation now.



d. Each ..C1.. ..R1.. ..C2.. must have been preceded by ..C1.. ..R2.. ..C2.. and they
are then not in that ..R2.. relation anymore.

e. If ..C1.. ..R1.. ..C2.. , then it must have been preceded by ...C1.. ..R2.. ..C2.. ,
but ..C1.. not ..R2.. ..C2.. anymore.

(SRDex/SRDev) – Persistence, optional or mandatory: same four options as for
persistence with classes.

2.3 Dynamic constraints for attributes

(Freez) “frozen” attribute. For instance, the Date of Birth of a person or her
Social security number which are ‘frozen’/persists once that data is added to the
database.
a. Once the value for ..A1.. is set, it cannot change anymore.
b. Once the value for ..A1.. is set, it must remain that value.
c. Once the value for ..A1.. is set, it must remain the same.

(Aqev) Quantitative evolution, where a is a binary relation between a class

and a data type, a ∈ Aqev
I(t)
A1,A2

→ ∃(t + n) > t.(a ∈ A1
I(t) ∧ a /∈ A2

I(t) ∧ a ∈
A2
I(t+n) ∧ a /∈ A1

I(t+n)) where n ∈ Z. For instance, an employee receives a
inflation-adjusted salary increase every two years.
a. Each ..C1..’s ..A1.. is updated after [at least/at most/every] ..D1.. to ..A2...
b. Each ..C1..’s ..A1.. changes after [at least/at most/every] ... to ..A2...
c. The ..A1.. of each ..C1.. hast to be updated with ..A2.. after [at least/at

most/every] ..D1.. .


