
July 2017

Appendix of the paper entitled:
“Natural language template selection for

temporal constraints”
— paper presented at the CREOL 2017 workshop, part of JOWO 2017 —

C. Maria KEET 1

Department of Computer Science, University of Cape Town, South Africa

Abstract. Representing temporal knowledge and information in tempo-
ral logics for ontologies and conceptual data models has faced issues due
to inaccessibility of the underlying logic and limited intuitiveness of di-
agrammatic extensions to the modelling languages. We aim to address
this by designing controlled natural language templates for generating
sentences that verbalise in English the temporal constraints defined in
a temporal logic. 101 templates were designed and evaluated by experts
in temporal logics and by ‘novice temporal modellers’ on semantic ad-
equacy and preference. There was only 12% unanimity among the ex-
perts, and 89% by majority voting. The novice temporal modellers were
much more lenient in judgment on whether the templates captured the
semantics adequately. Instead of a direct 1:1 mapping between an ax-
iom’s components and the natural language rendering, the more natural-
sounding sentences were preferred, therewith linking an axiom type as
a whole to a template.

Keywords. Temporal logics, Temporal ontologies, Controlled Natural
Language, Temporal conceptual models

1. Final templates

Considering the usual model-theoretic semantics, we use here a temporal inter-
pretation of the signature of a conceptual data modelM for this. This is a struc-
ture of the form: I =

(
(Z, <),∆I , {·I(t) | t ∈ Z}

)
, where (Z, <) is the set of

integers denoting the intended flow of time, ∆I 6= ∅ is the interpretation domain
divided into ∆IC over classes and ∆ID over data types, and ·I(t), for t ∈ Z, is the
interpretation function which assigns a set CI(t) ⊆ ∆I to each entity type C ∈ C,
a set RI(t) of tuples over ∆IC × ∆IC to each relation R ∈ R and a set AI(t) of
tuples over ∆IC ×∆ID to each attribute A ∈ A.

The remainder of the appendix lists the abbreviation of the constraint, de-
scription, formalisation, and ‘winning’ template. Starred constraints are updated
templates cf. those presented during the evaluation.

1Corresponding Author: C. Maria Keet, Department of Computer Science, University of Cape
Town, Cape Town, South Africa; E-mail: mkeet@cs.uct.ac.za.

July 2017

• (Sc) Snapshot class,

o ∈ CI(t) → ∀t′ ∈ T .o ∈ CI(t
′);

..C1.. is an entity type whose objects will always be a(n) ..C1.. .
• (Tc) Temporary class,

o ∈ CI(t) → ∃t′ 6= t.o /∈ CI(t
′);

Each ..C1.. is not a(n) ..C1.. for some time.
• (Sr) Snapshot relationship,

r ∈ RI(t) → ∀t′ ∈ T .r ∈ RI(t
′);

Each ..C1.. ..R1.. ..C2.. endures indefinitely.
• (Tr) Temporal relationship,

r ∈ RI(t) → ∃t′ 6= t.r /∈ RI(t
′);

The objects participating in a fact in ..C1.. ..R1.. ..C2.. do not relate through
..R1.. at some time.
• (Sa) Snapshot attribute,

o ∈ CI(t) ∧ 〈o, d〉 ∈ AI(t) → ∀t′ ∈ T .〈o, d〉 ∈ AI(t
′);

Each object in entity type ..C1.. having attribute ..A1.. has ..A1.. at all times.
• (Ta) Temporal attribute,

o ∈ CI(t) ∧ 〈o, d〉 ∈ AI(t) → ∃t′ 6= t.〈o, d〉 /∈ AI(t
′);

Each object in entity type ..C1.. having attribute ..A1.. does not have a(n) ..A1..
at some time.
• (Dex) Dynamic extension in the future,

o ∈ Dex
I(t)
C1,C2

→ (o ∈ C1
I(t) ∧ o /∈ C2

I(t) ∧ o ∈ C2
I(t+1));

A(n) ..C1.. may also become a(n) ..C2.. .
• (DexM) Mandatory Dex,

o ∈ DexM
I(t)
C1,C2

→ (o ∈ C1
I(t) → ∃t′ > t.o ∈ Dex

I(t′)
C1,C2

);
Each ..C1.. also has to become a(n) ..C2.. .
• (Dex−) Dynamic extension in the past

o ∈ Dex−
I(t)
C1,C2

→ (o ∈ C1
I(t) ∧ o /∈ C2

I(t) ∧ o ∈ C2
I(t−1));

A(n) ..C1.. may have been a(n) ..C2.. before.
• (DexM−) Mandatory Dex, past

o ∈ DexM−
I(t)
C1,C2

→ (o ∈ C1
I(t) → ∃t′ < t.o ∈ Dex

I(t′)
C1,C2

);
Each ..C1.. was already a(n) ..C2.. .
• (Dev) Dynamic evolution, future, optional

o ∈ Dev
I(t)
C1,C2

→ (o ∈ C1
I(t) ∧ o /∈ C2

I(t) ∧ o ∈ C2
I(t+1) ∧ o /∈ C1

I(t+1));
A(n) ..C1.. may evolve to become a(n) ..C2.. ceasing to be a(n) ..C1.. .
• (DevM) Mandatory dynamic evolution, future

o ∈ DevM
I(t)
C1,C2

→ (o ∈ C1
I(t) → ∃t′ > t.o ∈ Dev

I(t′)
C1,C2

);
Each ..C1.. must evolve to ..C2.. ceasing to be a(n) ..C1.. .
• (Dev−) Dynamic evolution, past, optional

o ∈ Dev−
I(t)
C1,C2

→ (o ∈ C1
I(t) ∧ o /∈ C2

I(t) ∧ o ∈ C2
I(t−1) ∧ o /∈ C1

I(t−1));
A(n) ..C1.. may have been a(n) ..C2.. before, but is not a(n) ..C2.. now.
• (DevM−) Mandatory dynamic evolution, past:

o ∈ DevM−
I(t)
C1,C2

→ (o ∈ C1
I(t) → ∃t′ < t.o ∈ Dev

I(t′)
C1,C2

);
Each ..C1.. was a(n) ..C2.. before, but is not a(n) ..C2.. now.
• (PDex/PDev) Persistent extension or evolution; persistence-part of the

July 2017

constraint, for classes (similar for relations and attributes):

o ∈ C
I(t)
1 → ∀t′ > t.o ∈ C

I(t′)
1 ;

<selected Dex/Dev option>, and this remains so indefinitely.
• (Qex) Quantitative extension, future, optional, where here and in the fol-

lowing variants, n ∈ Z and t + n ∈ Tp, and for Qex then:

o ∈ Qex
I(t)
C1,C2

→ ∃(t + n) > t.(o ∈ C1
I(t) ∧ o /∈ C2

I(t) ∧ C2I(t+n));
A(n) ..C1.. may also become a(n) ..C2.. after [at least/at most/exactly] ..D1.. .
• (QexM) Quantitative extension, future, mandatory

o ∈ Qex
I(t)
C1,C2

→ (o ∈ C1
I(t) → ∃(t + n) > t.o ∈ Qex

I(t+n)
C1,C2

);
Each ..C1.. will also become a(n) ..C2.. after [at least/at most/exactly] ..D1.. .
• (Qex−) Quantitative extension, past, optional

o ∈ Qex
I(t)
C1,C2

→ ∃(t− n) < t.(o ∈ C
I(t−n)
1 ∧ o ∈ C

I(t)
2 ∧ o /∈ C

I(t−n)
2);

A ..C1.. may already be a(n) ..C2.. for [at least/at most/exactly] ..D1.. since
..D1.. . **
• (QexM−) Quantitative extension, past, mandatory

o ∈ QexM−
I(t)
C1,C2

→ (o ∈ C
I(t)
1 → ∃(t− n) < t.o ∈ Qex

I(t−n)
C1,C2

);
Each ..C1.. was already a(n) ..C2.. for [at least/at most/exactly] ..D1.. since
..D1.. . **
• (Qev) Quantitative evolution, future

o ∈ Qev
I(t)
C1,C2

→ ∃(t + n) > t.(o ∈ C1
I(t) ∧ o /∈ C2

I(t) ∧ o ∈ C2
I(t+n) ∧ o /∈

C1
I(t+n));

A ..C1.. may progress to a(n) ..C2.. after [at least/at most/exactly] ..D1.. ,
ceasing to be a(n) ..C1.. .
• (QevM) Quantitative evolution, future, mandatory

o ∈ QevM
I(t)
C1,C2

→ (o ∈ C
I(t)
1 → ∃(t + n) > t.o ∈ Qev

I(t+n)
C1,C2

);
Each ..C1.. must progress to a(n) ..C2.. after [at least/at most/exactly] ..D1..
, ceasing to be a(n) ..C1.. .
• (Qev−) Quantitative evolution, past

o ∈ Qev−
I(t)
C1,C2

→ ∃(t − n) < t.(o ∈ C
I(t)
1 ∧ o /∈ C

I(t)
2 ∧ o ∈ C

I(t−n)
2 ∧ o /∈

C
I(t−n)
1);

A(n) ..C1.. may have been a(n) ..C2.. before for a period of [at least/at
most/exactly] ..D1.. , but is not a C2 now. **
• (QevM−) Quantitative evolution, past, mandatory

o ∈ QevM−
I(t)
C1,C2

→ (o ∈ C
I(t)
1 → ∃(t− n) < t.o ∈ Qev

I(t−n)
C2,C1

);
Each ..C1.. was a(n) ..C2.. before for a period of [at least/at most/exactly]
..D1.. , but is not a C2 now. **
• (RDex) Dynamic extension for relationships, future, optional

〈o, o′〉 ∈ RDexR1,R2

I(t) → (〈o, o′〉 ∈ R1
I(t) → ∃t′ > t.〈o, o′〉 ∈ R2

I(t′));
..C1.. ..R1.. ..C2.. may be followed by ..C1.. ..R2.. ..C2.. some time later. **
• (RDexM) Dynamic extension for relationships, mandatory,

〈o, o′〉 ∈ RDexM
I(t)
R1,R2

→ (〈o, o′〉 ∈ R1
I(t) → ∃t′ > t.〈o, o′〉 ∈ RDex

I(t′)
R1,R2

);
Each ..C1.. ..R1.. ..C2.. will be followed by ..C1.. ..R2.. ..C2.. .
• (RDex−) Dynamic extension for relationships, past, optional

〈o, o′〉 ∈ RDex−R1,R2

I(t) → (〈o, o′〉 ∈ R1
I(t) → ∃t′ < t.〈o, o′〉 ∈ R2

I(t′)).
..C1.. ..R1.. ..C2.. may be preceded by ..C1.. ..R2.. ..C2.. some time earlier. **

July 2017

• (RDexM−) Dynamic extension for relationships, past, mandatory

〈o, o′〉 ∈ RDexM−R1,R2

I(t) → (〈o, o′〉 ∈ R1
I(t) → ∃t′ < t.〈o, o′〉 ∈

RDex−R1,R2

I(t′)
);

Each ..C1.. ..R1.. ..C2.. was preceded by ..C1.. ..R2.. ..C2.. some time earlier. **
• (RDev) Dynamic evolution for relationships, future, optional,

〈o, o′〉 ∈ RDev
I(t)
R1,R2

→ (〈o, o′〉 ∈ R1
I(t) → ∃t′ > t.〈o, o′〉 ∈ R2

I(t′) ∧ 〈o, o′〉 /∈
R1
I(t′));

..C1.. ..R1.. ..C2.. may be followed by ..C1.. ..R2.. ..C2.. , ending ..C1.. ..R1.. ..C2..

.
• (RDevM) Dynamic evolution for relationships, future, mandatory,

〈o, o′〉 ∈ RDevM
I(t)
R1,R2

→ (〈o, o′〉 ∈ R1
I(t) → ∃t′ > t.〈o, o′〉 ∈ RDev

I(t′)
R1,R2

);
Each ..C1.. ..R1.. ..C2.. will be followed by ..C1.. ..R2.. ..C2.. , terminating the
..C1.. ..R1.. ..C2.. relation.
• (RDev−) Dynamic evolution for relationships, past, optional:

〈o, o′〉 ∈ RDev−R1,R2

I(t) → (〈o, o′〉 ∈ R1
I(t) → ∃t′ < t.〈o, o′〉 ∈ R2

I(t′) ∧
〈o, o′〉 /∈ R1

I(t′));
..C1.. ..R1.. ..C2.. may have been preceded by ..C1.. ..R2.. ..C2.. and they are not
in that ..C1.. ..R2.. ..C2.. relation now.
• (RDevM−) Dynamic evolution for relationships, past, mandatory

〈o, o′〉 ∈ RDevM−R1,R2

I(t) → (〈o, o′〉 ∈ R1
I(t) → ∃t′ < t.〈o, o′〉 ∈

RDevR1,R2

I(t′));
Each ..C1.. ..R1.. ..C2.. must have been preceded by ..C1.. ..R2.. ..C2.., and ter-
minating that ..C1.. ..R2.. ..C2.. relation. **
• (SRDex/SRDev) Persistence (see PDex/PDev),
<selected Dex/Dev option>, and this remains so indefinitely.
• (Freez) “frozen” attribute

a ∈ FreezI(t) → ∀t′ > t.a ∈ AI(t
′);

Once the value for ..A1.. is set, it cannot change anymore.
• (Aqev) Quantitative evolution, where a is a binary relation between a class

and a data type,

a ∈ Aqev
I(t)
A1,A2

→ ∃(t + n) > t.(a ∈ A1
I(t) ∧ a /∈ A2

I(t) ∧ a ∈ A2
I(t+n) ∧ a /∈

A1
I(t+n)) where n ∈ Z;

Each ..C1..’s ..A1.. changes after [at least/at most/every] ... to ..A2.. .

