Temporal conceptual models — preferences for
representations

C. Maria Keet and Sonia Berman

Department of Computer Science, University of Cape Town,
South Africa, {mkeet,sonia}@cs.uct.ac.za

1 Introduction

These introductory notes describe the task, a refresher on the notation of the semantics
of the constraints, and some explanatory notes on how to read the sample sentences and
diagrams. ’

1.1 Task

For each element or constraint, fill in the corresponding section in the spreadsheet. The fields
that require a value are colour-coded in red. You may either select from the drop-down list
in column E or type a value between 0 and 5, where “5” is the most preferred, “1” least
preferred, and “0” not at all. Any comments you may have can be added in column G.

1.2 Refresher notes on logic notation of the semantics

‘We rely on the formal foundations of ERy7 and EER“‘;; with some adjustments to har-
monise notation and the extension with mandatory constraints), being the semantics of
DLRus, so as not to clutter this presentation with too much repetition and syntax no-
tation. Considering usual model-theoretic semantics, we use here a temporal interpretation
of the signature of a conceptual data model M for this. This is a structure of the form:
I = ((Z,<), AT, {T® | t € Z}), where (Z,<) is the set of integers denoting the intended
flow of time, AT # 0 is the interpretation domain divided into AZ over classes and A, over
data types, and -Z®), for t € Z, is the interpretation function which assigns a set 0T C A%
to each entity type C' € C, a set RZ® of tuples over AL x AL to each relation R € R and
a set AT® of tuples over AL x A, to each attribute A € A, While DLRys permits n-ary
relations, we consider here just the case for binaries.

So, for instance, a semantics like 0 € CT®W s W' € T.o € CT() states that an object
o is a member of the temporal interpretation (the “Z(t)”) of class C' at time ¢, and if that
holds, then (the “—”) for all times ¢’ in the set of time point 7T, object o is still & member
of class C; i..e, it holds at all time points in the past, present, and in the future. Another
example, for relationships, is 7 € RZ® — 3¢ £ t.r ¢ RZ®), where r is a binary relation
(i.e., with two participating objects, member of a class) instantiating the relationship R at
time ¢, and if that holds, then there is a time point ¢ in the set of time point 7~ that is not
time point ¢, where r is not a member of the relationship R; i.e., there’s some time in the
past or in the future where it doesn’t hold.

Regarding DLRy s notation, that is just like the description logics notation you have seen
before in OF and/or LAI, but then with temporal operators. The temporal counterpart to

Jis ©* and the temporal counterpart to the V is O*. Added to that is a + or a — for the
future and the past, respectively. So, then a O means ‘some time in the future this will
be true’ and a O~ means ‘this was true some time in the past’, and a O3 ‘this was true
three time units ago’, where a time unit could be a year, week, etc. Further, there’s a notion
of ‘the (immediate) next time instant’, as &, and ‘the (immediate) previous time instant’,
as ©. For instance, we know that students are at some point in time not students (you
weren’t before going to school, and at some point you’ll graduate and are thus not a student
anymore), so that is represented in a temporal DL as Student T &*—Student. There are also
transition constraints, which are written in a shorthand notation (syntactic sugar) as, e.g.,
DEXclasst, Class2, Which in full DL notation is Classl M —Class2 1@ Class2, and DEV(iassi,Class?
is the shorthand notation for Class1 M —Class2 1 & (—Class1 M Class2).

1.3 Sample diagram

Besides the logic notation, there is also a graphical notation. This is basically a flavour of
ER diagrams that has been extended with the temporal constraints. That notation has gone
through some evaluation in previous research, and those participants preferred a ‘clock’
notation attached to an entity type (DL class), relationship (DL role), or attribute, and
arrows with a dashed shaft for the transition constraints between entity types and between
relationships if it is an optional transition, and a solid shaft for a mandatory transition. An
example is shown in Figure 1 for illustrative purpose, noting that we are in the scope of
conceptual data modelling, not ontologies, so the the constraints hold for a specific universe
of discourse (‘business rules’ of a company) and intended for some particular database, rather
than what generally must hold for a subject domain,

Employee [Projectqg3
N N

4

DEX”

Board (:9 Manager @

Member

manage

~~~~~

Fig. 1. Example of a temporally extended ER diagram in an updated EERQ;F notation.

E.g. Office is a temporal attribute, for an employee may have an office sometimes and
not have an office at other times. The mandatory transition DEX ™ indicates that a manager
must have been working for the company as a regular employee before being promoted to
manager, and thus that that transition from employee to manager happened in the past.
Not all employees get promoted to manager, hence, the optional DEX from employee to
manager. Likewise, the transition from work to manage is optional.




1.4 Explanatory notes on the sentences

Each element/constraint has an abbreviation and a name., For most constraints, the seman-
tics arve given, with the others following the same pattern as the others of the same type.
Several constraints also have an example from some hypothetical universe of discourse of
a temporal conceptual model, to help filling in the slots of the template sentences. So, for
instance in the first case, snapshot class (SC), a sample entity type is Person, which would
then be plugged in into the template, resulting in, e.g., “Each Person is always a Person.”.

Regarding relationships, while the semantics doesn't constrain the classes (does not men-
tion specific entity types), they are always considered in conceptual data models, mainly
because there is a practice of reusing labels for naming of relationships (e.g., multiple times
‘has’) so that such context is necessary in the verbalisation of conceptual models (cf. ontolo-
gies). Therefore, we include the entity types in the sentences.

2 Elements and constraints for evaluation

2.1 Basics: snapshot and temporal

(Sc) Snapshot class; for instance, Person:
(a) o € Person™® — Vi’ € T.o € Person®(t)
(b) Person T 3*Person
(c) 8c(Person)
(d) Diagram:

Pe\’SOQ

(e) Person is an entity type whose objects will always be a(n) Person.

(Tc) Temporary class; for instance, Undergraduate Student (assuming they graduate and end
up as alumni or drop outs):
(2) o € UndergraduateStudent™® — ' # t.0 ¢ UndergraduateStudent™*)
(b) UndergraduateStudent & ¢*—-UndergraduateStudent
{c) Tc(Undergraduate Student)
(d) Diagram:

Ur\darﬂm duateStudent @

(e) Each Undergraduate Student is not a(n) Undergraduate Student for some time.




(SR) Snapshot relationship. For instance, Producer produces Movie.
(a) 7 € produces™ — ¥t € Tr € produces™(t), where (0,0') € R, and o € Producer
and o/ € Movie may be assumed to be declared.
(b) produces C O*produces (idem ditto on the producer and movie)
(c) Sr(produces) (idem ditto on the producer and movie)
(d) Diagram:

Producetr P‘”"CJUV Movie

(e) Bach Producer produces Movie endures indefinitely.

(Tr) Temporal relationiship. For instance, Person married-to Person in a conceptual model for
a census database (as there is assumed to be either a divorce or widowhood at some
point).

(8) r € marriedTo™® — 3t # tr ¢ marriedTo™ ), where (0,0') € marrriedTo, and
o0 € Person and o € Person may be assumed to be declared.

(b) marriedTo C O*-marriedTo (idem ditto on the persons participating in it)

(c) Tr(marriedTo) (idem ditto on the person participating in it)

(d) Diagram:

.,_’__’__d_..—-'«-—"‘/‘\\\
" \\
FPerson martied To G =

(e) The objects participating in a fact in Person married to Person do not relate through
married-to at some time.

(SA) Snapshot attribute, For instance, Network Card has MAC Address String, where there
attribute A is has MAC Address, Note that the template would drop ‘has’ if it is already
in the attribute’s name, or it is substituted with the verb in the attribute’s nane:
(a) 0 € NetworkCard™ (o, d) € hasM ACAddress™®) — V' € T.(o,d) € hasM AC Address™")
(b) hasMACAddress & O*hasMACAddress
{c) Sa(hasMACAddress)
{(d) Diagram:

T T~
N ekroor KCCL U’C‘ \\C(f; M A C address

(e) Each object in entity type Network Card having attribute has MAC Address has
MAC Address at all times.




(Ta) Temporal attribute. For instance, the temporal counterpart for this constraint with
Employee receives Bonus Integer.
(a) o € Employee™™® A (o0,d) € receivesBonus™® — 3t/ # t.(o,d) ¢ receives Bonus
(b) receivesBonus & O*—receivesBonus
(c) Ta{receivesBonus)
(d) Diagram

Z(t')

vecelve SBonus @

Emy\o'dee

(e) Each object in entity type Employee having attribute receives Bonus does not have
a(n) receives Bonus at some time.

3 Dynamic constraints
3.1 Dynamic constraints for classes

(DEX) Dynamic extension in the future, ie.,

a. 0o € Employee™® A o ¢ Manager™ A o € Manager
b. <>+DEXEmployee,Manager

c. Dex(Employee, Manager)
d. Diagrain:

Z(t+1)

PR
r PEX S

’ A N\anage r @

E_m\::\og ce

e. A(n) Employee may also become a{n) Manager .

(DEXM) Mandatory DEX, ie., apply, meaning that all objects instantiating Cy will also
instantiate Cz at some point in time in the future: For instance, each PhDThesis will be
added to the library as a LibraryBook.

, Tt Z(t'
2. Q€ PhDThesis™®) — 3t > t.o E‘ DEXPhL))T,mis’LibmryBaak
. PhDThesis & <>+DEXTPhDThesIs,LibraryBook
DexM(PhDThesis, LibraryBook)

. Diagram: b

DEAR :
L ibra rggo@k ®

oo o

PN)'W\ esis @

e. Each PhDThesis also has to become a(n) LibraryBook .




(DEXx™) Dynamic extension in the past, i.e., For instance, a Manager at a company was
already an Empioyee at that company:

a. 0 € Employee™® A o € Manager™® Ao ¢ ManagerTt=1
b. <>“DEXEmplt:vyea,Manager

c. Dex™ (Employee,Manager)
d. Diagram:

PN

-~ ~

-~ — 0~
/’:DEX N
™~

N

Enployee S Manager @

e. A(n) Manager may have been a{n) Employee before.

(DEXM ™) Mandatory dynamic extension, past: For instance, one can only be a PhD supervisor
if one is a Professor, and all professors are going to have to supervise PhD students, according
to university management.

" a. 0 € PhDsupervisor™® — 3 < to e DEX}ID(:;)fessorlphDsupemisor
b. PhDsupetvisor & OmDEXProfessor,PhDsuper\'isor ’
¢. DexM™ (Professor, PhD supervisor)
d. Diagram:
DEXT ‘ =
‘ ) ND sy eervVIsor O
Professot PhD supe

e. Bach PhD supervisor was already a{n) Professor .

(DEvV) Dynamic evolution, future, optional: For instance, a Caterpillar is expected to turn
into a Butterfly (just not all do in praxis).

. 0 € Caterpillar™® A o ¢ Butter fly™® A o € Butter fly+1) A o ¢ CaterpillarT(t+1)

a
b. 0"‘4DEVCaterpillar,Butterfly
¢. Dev(Caterpillar,Butterfly)
d. Diagram: N
o
/S DEV N

\

Ca’berpx\\@r @ ( | ) A ﬁuﬂferHﬂ @

e. A(n) Caterpillar may evolve to become a(n) Butterfly ceasing to be a(n) Caterpillar .

i




(DEVM) Mandatory dynamic evolution, future: For instance, at a university where each
Student eventually will receive a certificate and thus become an Alumnus (and never study
there again), the constraint for the database may be:

'
a. 0 € StudentT® 3 > toe DEvggic)ient,Alumnus

b. Student O+DEVStudent,Alumnus
¢. DevM(8tudent, Alumnus)
d. Diagram:

Student ®

DEeVY

A\umnué @

e. Each Student must evolve to Alumnus ceasing to be a(n) Student .

(DEV™) Dynamic evolution, past, optional: For instance, for a university database: while it
is common now for an Academic to mmove between universities, some stay at the same place,
or return to, where they have been a PhD student,

. 0E Academzcz(t) ANoé PhDStudentZ(t) /\ o€ PhDStudentI(‘ D Ao ¢ AcademicT(t= )

a
b. &~ DEVPhDStudent Academic
c. Dev™ (PhD Student, Academlq)
d. Diagram: : o
» / Dev-r. .
/

Academic ® B

PhDStudert (O

e. A(n) Academic may have been a(n) PhD Student before, but is not a(n) PhD Student
now.

(DEVM ™) Mandatory dynamic evolution, past: For instance, Frog and the Tadpole it used to
be.

a. 0.€ Frog®® — 3t <toe€ D]"VTEzd;olc Frog

b, Frog £ O~ DEVtadpole,Frog

¢. DevM™ (Tadpole,Frog)

d. Diagram: ‘DEV-

Tad po\z ) Frog ©

e. Each Frog was a(n) Tadpole before, but is not a{n} Tadpole now,

3(1',‘\»‘ IS




(PDEX/PDEV) Persistent extension or evolution; for instance, once a conference paper has
been published in print, that Publication is there for posterity in, say, Springer’s system. The
persistence can come after any DEV/DEX variant introduced before, to which the following
persistence constraint is added:

a. 0 € Publication™® — V¥ > t.o € Publication®®")

b. Publication © OFPublication

c. PDex(Publication) or PDev(Publication)

d. Diagram;

=

) S PDEX ™

C()OQ@G\P@V N Publication

e. <selected DEX/DEV option>, and this remains so indefinitely.

For quantitative extension and evolution, we need a specific number, n for counting and,
implicitly, some time unit to be able to construct, e.g., ‘after at least 3 years’ and ‘at most
5 months’. The number is denoted in the formalisation as n where n € Z and ¢t +n € 7,.
(QEX) Quantitative extension, future, optional, then: For instance, an Employee may be
promoted to Manager at that company after 3 years of service.

a. 3(t +3) > t.(0 € Employee™® A o ¢ Manager™® A Manager™(t+3))
b. <>-"3Ql—‘:’XEmployee,Mana\ger

¢. Qex(Employee, Manager, 3 years)

d. Diagram:

/K""‘ ~
s DEXB ™~

EM\:\D%Q@ A N\anager ®

[

. A(n) Employee may also become a(n) Mansger after exactly 3 years .

ST e




(QEXM) Quantitative extension, future, mandatory: For instance, all Students have to do
some Volunteer service in the second year of their study.
a. 0 € Student™® — 3t +1) > £.0 € QEXeuions volunteer

b. Student c O+1QEXStudent,Volunteer
¢. QexM(Student, Volunteer, 1 year)

d. Diagram:
/’I)E_X_j\

Student Volupteer O

e. Each Student will also become a(n) Volunteer after exactly 1 year .

{QEX™) Quantitative extension, past, optional, where the past counterpart is similar to the
future, but then ¢ —n. -

. 3t —3) < t.{o € Employee™ 3 Ao € Manager™® A o ¢ Manager®®=3))

b. <>—3QF"XEmployee,M:mager .

¢. Qox™ (Employee, Manager, 3 years)

d. Diagram:

©

—T~

DEX"3 \\\»l

Er~ployee [ Manager @

e. A manager may already be a(n) Employee since at least 3 years ,

{QEXM™) Quantitative extension, past, mandatory, where the past counterpart is similar
to the future, but then ¢/ <t:.

a. 0 € Volunteer™) — 3(t — 1) < £.0 € QEX5yugont Volunteer

b. Volunteer C <>—1(':ZEXStudent,Vctluntee;'

¢, QexM~ (Student, Volunteer, 1 year)

d. Diagram:

DEX~L

Student v\/'olun’(,cer ®

e. Fach Volunteer was already a(n) Student since exactly 1 year .




(QEV) Quantitative evolution, future: For instance, a non-tenured prof may have met the
criteria and thus be confirmed as a Associate Prof after 6 years.
a. 3(t+6) > t.(0 € NonTenuredProf*® no ¢ AssociateProfT® Ao € AssociateProfF++6IA
o ¢ NonTenuredProfT(t+6)
L OF8 QEVNonTenuredProf,AssociateProf
. Qev{Non-tenured Prof, Associate Prof, 6 years)
. Diagran:

l NC)(\{K’J\UWd Rog ®

P

o N
// ]7!2\/&3 N

Ass oc_f\ajte(%o{'\ @ I

e. A Non-tenured Prol may progress to a(n) Associate Prof after exactly 6 years, ceasing to
be a(n) Non-tenured Prof

(QevM) Quantitative evolution, future, mandatory): For instance, the fantasy world where
all non-tenured profs will get that coveted job of associate prof after 6 years in the tenure track,
regardless their performance.

a 0€ NonTe'rLuredProfI(t) - 3(t + 6) >to¢ QEvl];’(;:’ls‘zmuredl’raf,/&ssaciateP'l‘Df

. NonTenuredProf c O+6QEVNQnTenuredef,Associa'(epmf

QevM(Non-tenured Prof, Associate Prof, 6 years)

oo o

. Diagram: /
;D\;m N
l Aé‘SC)CfQ'J(,Q-?rO&/ @

NostenoredProf ®

e. Each Non-tenured Prof must progress to a(n) Associate Prof after exactly 6 years, ceasing
to be a(n) Non-tenured Prof .




(QEV™) Quantitative evolution, past, optional; e.g., a professor may have been a lecturer
before for at least two years at the same institution

a. It —2) < t.(o € ProfT® no ¢ Lecturer™ Ao € Lecturer?=2 Ao ¢ Prof*(t=2

b. <>—_2QEVLecturer,Prof

¢. Qev~ (Lecturer, Prof, 2 years)

d. Diagram: -

I - N\
s DEV 2 '~
W

4

¢rof (O

L ecturer @

e. A(n) Prof may have been a(n) Lecturer before for a period of at least 2 years, but is not
now.

(QEVM ™) Quantitative evolution, past, mandatory; e.g., in an employee database of a law
firm, each new lawyer has worked for two years as a articled clerk.

a. 0 € Lawyer™ — 3(t—-2) <toe€ QEVﬁ(fgﬁldC,erk‘Lawye,

b. LaWyer C <>_2QEvArticledCIerck,Lawyer

¢. QevM™ (Lawyer, ArticledClerk, 2 years)

d. Diagram: C

f\rtu‘dgdc,\e.rk @ @ Lawyer @)

e. Each Lawyer was a(n) ArticledClerk before for a period of exactly 2 years, but is not
now.

PR

S DR AT VL T e S DT T T




3.2 Dynamic constraints for relationships

(RDEX) — Dynamic extension of a relationship. For instance, a Person has made a booking
for a Flight, and then that person does a check-in for that flight some time afterward.

a. (0,0} € booking™ — 3t' > t.{0,0) € checkin™(t)

b. <>+RDEXbooking,checkIn

¢. RDex(booking,checkIn)

checkTn (O

d. Diagram:
= }

Fergen T~ Flig ht
\@)W

e. Person booking Flight may be followed by Person check-in Flight some time later.

(RDEXM) — Dynamic extension for relationships, mandatory. For instance, there may be a
rule in an organisation that everyone will take turns in leading the organisation.

{0,0) € memberO fX8) — 3t' > t.(0,d) € RDEX?‘;(:;)WE,,OLMM

b. memberOf C <>+RDEXmemberOf,leads

:, RDex (member-of, leads)

¢
d. Diagram:

®

O \‘8cm'\ sation

e. Each Person member-of Organisation will be followed by Person leads Organisation .




(RDEX™) — Dynamic extension for relationships, past, optional. For instance, a student who
failed a course may have enrolled in that course again (e.g., enrols in CSC1015F again [not
considering the course as identified by ‘CSC1015F in 2016’}}.

a. (0,0) € enrolls™® — 3’ < t.{0,0) € fails™®)

b. &~ RDDXfalls,enroils

¢. RDex™ (fails,enrolls)

d. Diagram:
T enrdls ©
PN enrolls L\>\
e ) /4% . )
S‘k uden TER )’ ‘ Coutse l
- / /,,/-”“"/‘ - '
e -

(\a\lio/'

e. Student enrolls in Course may be preceded by Student fails Course some time earlier,

(RDEXM™) — Dynamic extension for relationships, past, mandatory: For mstance, every
passenger who boards a flight must have checked in.

I 4
a. (0,0') € boarding™® — 3’ < 1.(0,0) € RDEX 4,k 1n boarding i
b. boarding & ¢~ RDEXcheckin,boarding
c
d

. RDex™ (checkIn,boarding)

. Dia,gram'- /\
boarding O =

s 7\ \/ . ;ght

e. Each Person boarding Flight was preceded by Person check-in Flight some time earlier.




(RDEvV) — Dynamic evolution for relationships, future, optional: For instance, a marriage
between two persons may end up in a divorce of those two persons.

a. {0,0') € marriedTo™® — 3t' > t.{0,0') € divorcedFrom™¥) A (0,0') ¢ marriedT'o™)
b. <>+RDEVmarriedT@,divorcedFrom

c. RDev{married-to, divorced-from)

d. Diagram:

e l\w--ﬂ.__s

— i .
dworcedrom ®© "
Frsen . T \
\\\_. “— 4)
\.\\.. - D = \f )

—.,

s

\&._/::\1\0 rfl@c{@-/\ L
\\\;/ - -

e. Person married-to Person may be followed by Person divorced-from Person, ending Person
married-to Person.

(RDEVM) — Dynamic evolution for relationships, future, mandatory: For instance, a process
must release a lock after it has blocked that for 2 while.

a. (0,0') € blocksZ® — 3t' > t.(0,0') € RDEV?&CM’MZWSM

b. blocks C <>_’_Rzl)Evblocks,rele:-xses
c. RDevM(blocks,releases)

d. Diagram:

P‘r Oleas
—_— - 7
(\\\\\Q\Ocks @’ />

e. Fach Process blocks Lock will be followed by Process releases Lock , terminating the
Process blocks Lock relation.




(RDEV™) — Dynamic evolution for relationships, past, optional: For instance, books on
restricted loan from a library may have been on regular loan from that library (e.g., & book is
a high-in-demand textbook for a course in the semester, or it is from a special collection to
begin with), and some couples remarry after they got divorced (like John Diggle and Laila
in the TV series Arrow).

a. {0,0) € restrictedLoan™® — 3¢’ < 1.{0,0') € loan™*) A {0, 0') ¢ restrictedLoan®)

b. <>_R':D]—‘—"Vlman,restriz:tech;'an

¢. Rbev™ (loan,restrictedLoan)

d. Diagram: ——
T vestridred La’mﬁ-
e \

nu.n_%'(**_
e

Book

. Book on restricted loan from Library may have been preceded by Book on loan from
Library and they are not in that Book on lean from Library relation now.

(RDEVM™) ~ Dynamic evolution for relationships, past, mandatory: For instance, any pair
of humans who are divorced were married before that.

, ~ Z(t

a. (0,0') € dovircedFrom™® — 3t' < t.{0,0') € RDEV;,. o, iearo divorcedFrom )
b. divorcedFrom C <>——RDEVmarried'l'o,di\/orcedFr(:«m

¢. RDevM™ (marriedTo,divorcedFrom)

d. Diagram:

cijorce

lw-,«_w_,‘-wwfw_____s—ﬁ-c‘___—»ﬁ,\
/C é FV oM @

e. Each Person divorced-from Person must have been preceded by Person married-to person,
and terminating that Person married-to Person relation.

(SRDEx/SRDev) — Persistence, optional or mandatory: same four options as for persistence
with classes.




3.3 Dynamic constraints for attributes

(FrERZ) “frozen” attribute. For instance, the Date of Birth of a person is ‘frozen’ (persists)
once that data is added to the ,database.
. Vt' > t.a € DateO f Birth*®)

a
b. DateOfBirth T O*DateOfBirth
¢, Freez(DateOfBirth)
d. Diagram:
/./——‘j
2, te(F Birth ﬁ )
ferzon Txite T

e. Once the value for DateOfBirth is set, it cannot change anymore.

(AQEV) Quantitative evolution, where a is a binary relation between a class and a data
type, a € AQEvf‘(:_)A2 = 3(t+n) > t(a € 1,70 Aa ¢ B,TO A g € BTE A g ¢ 4, T
where n € Z. For instance, journal articles of some scientific journals have an ‘embargo’ of
two years on them, where in the embargo period, one has to pay for reading the article, but
afterward it becomes open access (accessible for free).

a At +2) > t.(a € AccessCost™™ Ao ¢ OpenAceess™® Aa € OpenAccess™ D Aa ¢

AccessCostTt+2))

b. <>+2AQEVAccessCost.OpenAccess
¢. AQev{(AccessCost,Openhccess)
d. Diagram:

jon\rn&\Aft\C\Q ff%m e/
T /)\c_cess(:@gt @

e. Each JournalArticle’s AccessCost changes after 2 years to OpenAccess.

3.4 Interpreting the representation

For any, or all, of the following notations, describe in your own words what it means.




1. In the DLRys notation (A is an attribute; B, C, D are classes; Q, R are relationships):
AC O*-ABLC O*B
CCo*C
DCO*D
EC O*-E
FCO*=F
cC <>+DEVC7B
O~ DEvce
OPQEXqQR

2. The quasi-coding textual notation :
Sc(D)
“Sc(L)
Te(G)
Ta(G,H)
Tr(J)
Tr(K)
PDex (G)
Qex— (I, G, 2 years)
RDevM(J,K)




3. An EER?;? diagram:

4 Diagram notation

While the notation for temporal elements and constraints used in the diagrams is a result
of prior research, we would like to ask your opinion on the following additional possible
notations that have been designed since.

1. General shape of the arrow for dynamic constraints;
a. As used in the diagrams presented, with a plain solid or dashed shaft
b. The shaft has a triangle in the middle, like this:

2. General sha‘pe for persistent extension or evolution:

a. As used in the diagrams presented, where the arrow is labeled with PDEX or PDEV
b, The arrow is labeled with the usual DEX or DEV and has a pin next to it, like this:

DEX I




o

¢. The arrow is labeled with the usual DEX or DEV and has a pin in the triangle, like

General questions

. Is English your first/home language?

[Yes / Noj

. Your level of education:

Currently, T am a [Honours / Masters] student

. Which course(s) are you currently doing or have you completed?

[OE / LAI / both OE and LAT / neither]

. Thank you for showing your notation preferences for understanding e given conceptual

model. If you were designing a conceptual model yourself, rather than trying to under-
stand someone else’s model, which of the notations (a) to (e) would you prefer then?

. Any other comments you may have:







