Ontologies

Conclusions

A comparison of different types of declarative modelling

Maria Keet

Department of Computer Science, University of Cape Town, South Africa mkeet@cs.uct.ac.za

HydroSciences Montpellier Université de Montpellier & Institut de Recherche pour le Développement 20 June 2024

Conceptual data models

Ontologies

Conclusions

Outline

2 Conceptual data models

Models and terminology ●○○○○○○○○○○○ Conceptual data models

Ontologies

Conclusions

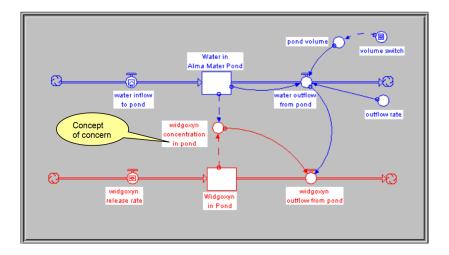
Outline

2 Conceptual data models

Models galore

- Physical model; e.g., Lego brick house
- Mathematical model; e.g., climate change model, bacterial growth in cheese-making
- Machine learning & cs.; e.g., data-driven spellchecker, LLM
- Conceptual models; e.g., concept maps, UML diagrams, ontologies

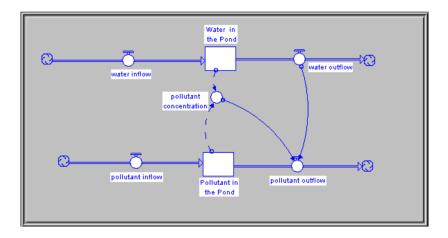
Models galore


- Physical model; e.g., Lego brick house
- Mathematical model; e.g., climate change model, bacterial growth in cheese-making
- Machine learning & cs.; e.g., data-driven spellchecker, LLM
- Conceptual models; e.g., concept maps, UML diagrams, ontologies
- ⇒ Gentle, mostly non-technical introduction to conceptual models in computing, with a few half-baked props on 'things with water'

Conceptual data models

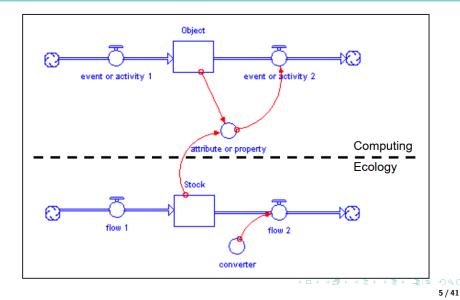
Ontologies

Conclusions


An old TOY example – linking different perspectives

Ontologies

Conclusions


An old TOY example – linking different perspectives

Ontologies

Conclusions

An old TOY example – linking different perspectives

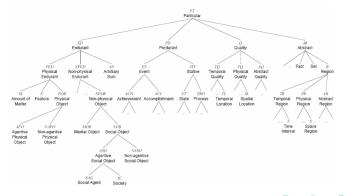
Ontologies

Conclusions

Matching things and terminology (1/2)

- Stock typically named with a noun (particular or universal)
- Flow named with a verb
- Converter as an attribute related to Flow or Stock
- Action Connector relates the former
- Object is candidate for an endurant
- *Event_or_activity* for a method or perdurant
- Converter maps to attribute_or_property
- Action Connector candidate for relationship between any two of Flow, Stock and Converter

More information and evaluation (with the microbial loop in ocean): Keet CM. Factors affecting ontology development in ecology. DILS'05.


Conceptual data models

Ontologies

Conclusions

Matching things and terminology (1/2)

- $\forall x(Stock(x) \rightarrow EnDurant(x))$
- $\forall x (Flow(x) \rightarrow PerDurant(x))$
- $\forall x (Converter(x) \rightarrow (Quality(x) \lor State(x)))$
- $\forall x (ActionConnector(x) \rightarrow Relationship(x))$

DOLCE: [Masolo et al.(2003)]

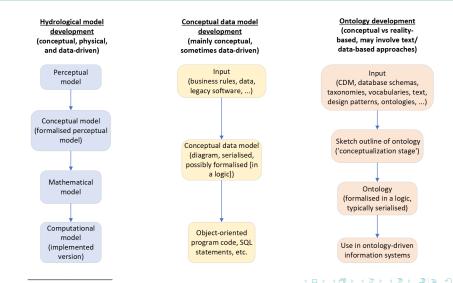
Some questions (part 1)

- Stella is rather outdated; which other (declarative) modelling languages could this be done with?
- What to convert it into?
 - Domain specific language
 - Conceptual data model, process model, ...
 - More generic terminology, classes, relations, and constraints (an ontology?)

Some questions (part 1)

- Stella is rather outdated; which other (declarative) modelling languages could this be done with?
- What to convert it into?
 - Domain specific language
 - Conceptual data model, process model, ...
 - More generic terminology, classes, relations, and constraints (an ontology?)
- Why even do this?

Some questions (part 1)

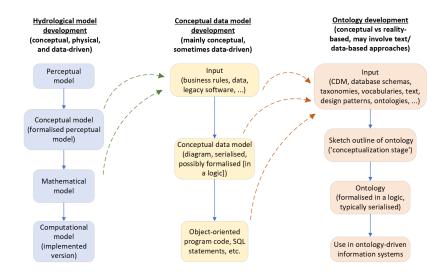

- Stella is rather outdated; which other (declarative) modelling languages could this be done with?
- What to convert it into?
 - Domain specific language
 - Conceptual data model, process model, ...
 - More generic terminology, classes, relations, and constraints (an ontology?)
- Why even do this?
 - integrating models, comparing models, checking for possible inconsistencies automatically
 - Management of the mathematical models: separate declarative from the imperative

Conceptual data models

Ontologies

Conclusions

Terminology, simplified processes, and some links

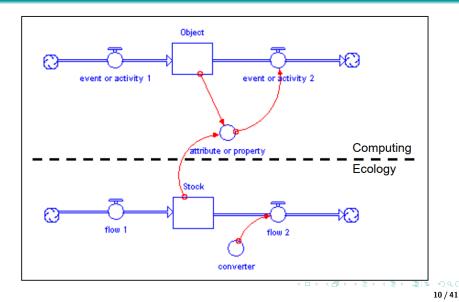

hydrological modelling information from [Solomatine and Wagener(2011)]

Conceptual data models

Ontologies

Conclusions

Terminology, simplified processes, and some links


hydrological modelling information from [Solomatine and Wagener(2011)]

b 4 3 4 5

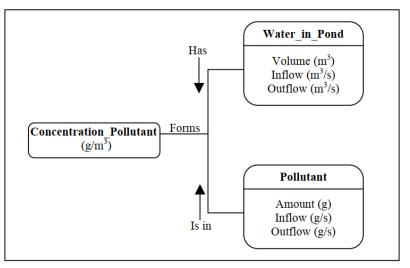
Conceptual data models

Ontologies

Conclusions

Ontologies

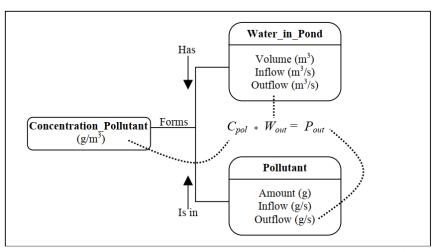
Conclusions


```
Object(t) = Object(t - dt) + (event_or_activity_1 - event_or_activity_2) * dt
2
    INIT Object = { Place initial value here... }
     INFLOWS:
       event_or_activity_1 = { Place right hand side of equation here... }
     OUTFLOWS:
       event_or_activity_2 = { Place right hand side of equation here... }
Stock(t) = Stock(t - dt) + (flow 1 - flow 2) * dt
    INIT Stock = { Place initial value here... }
     INFLOWS:
       flow_1 = { Place right hand side of equation here... }
     OUTFLOWS:
       flow_2 = { Place right hand side of equation here... }
    attribute_or_property = { Place right hand side of equation here... }
\odot
ര
    converter = { Place right hand side of equation here... }
```

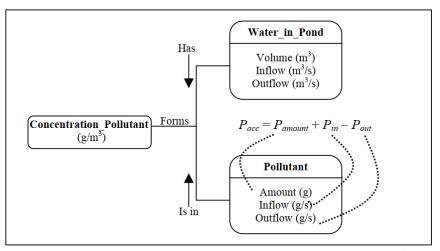
Conceptual data models

Ontologies

Conclusions

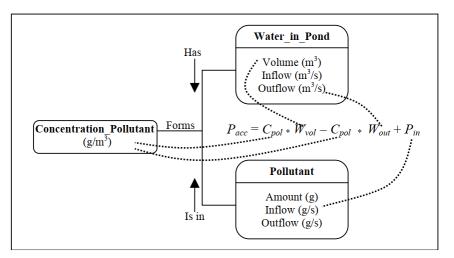

On the maths – scaffold generation

・ロ・・母・・ヨ・・ヨー ろんぐ


Ontologies

Conclusions

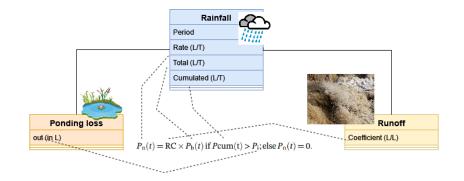
Ontologies


Conclusions

Conceptual data models

Ontologies

Conclusions



Conceptual data models

Ontologies

Conclusions

On the maths – a recent paper

formula from: Chahinian N, et al. (2023). Evaluation of an early flood warning system in Bamako (Mali): Lessons learned from the flood of May 2019. J Flood Risk Mgmt.

Ontologies

Conclusions

Some questions (part 2)

- How to do something like this systematically?
- Will any of the current applied maths markup languages (e.g., SBML) suffice?

Ontologies

Conclusions

Some questions (part 2)

- How to do something like this systematically?
- Will any of the current applied maths markup languages (e.g., SBML) suffice?
- Why look into this?

Some questions (part 2)

- How to do something like this systematically?
- Will any of the current applied maths markup languages (e.g., SBML) suffice?
- Why look into this?
 - Annotation (declarative representation) of the formula separates the what (the formulae) from the how (the code how to compute it)
 - One declarative formula/model can be loaded 'trivially' across programming languages and executed
 - (Parts of) The declarative formula/model can more easily be reused, saving design time, facilitating interoperability

Ontologies

Conclusions

SBML: random example of an SBML model from the BioModels database

BIOMD000000531_url.xml

136	<listofunitdefinitions></listofunitdefinitions>
137	<unitdefinition id="volume" metaid="_224f94f3-7d8c-4058-899c-ef158671d01e" name="volume"></unitdefinition>
138	tofUnits>
139	<unit exponent="1" kind="litre" metaid="b0b05891-9c17-4104-836c-e37a86b35f95" multiplier="1" scale="-3"></unit>
140	
141	
142	<unitdefinition id="time" metaid="_45409b69-6247-4659-b564-97ab08e0e5cd" name="time"></unitdefinition>
143	stofUnits>
144	<pre><unit exponent="1" kind="second" metaid="e38bd50b-5dda-4daa-a633-c6f6c51d2ed8" multiplier="3600" scale="0"></unit></pre>
145	
146	
147	<unitdefinition id="substance" metaid="_7abe9aca-312c-4b5d-baa2-c64840864da1" name="substance"></unitdefinition>
148	tofUnits>
149	<pre><unit exponent="1" kind="mole" metaid=" 5aa1de13-c181-4205-a36f-9fbe53894ab3" multiplier="1" scale="-3"></unit></pre>
150	
151	

Ontologies

Conclusions

SBML: random example of an SBML model from the BioModels database

BIOMD000000531_url.xml

196	stofParameters>
197	<pre><parameter constant="true" id="Ka" metaid="COPASI2" name="Ka" value="1.44"></parameter></pre>
198	<pre><annotation></annotation></pre>
199	<copasi xmlns="http://www.copasi.org/static/sbml"></copasi>
200	<rdf:rdf xmlns:dcterms="http://purl.org/dc/terms/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"></rdf:rdf>
201	<rdf:description rdf:about="#COPASI2"></rdf:description>
202	<pre><dcterms:created></dcterms:created></pre>
203	<rdf:description></rdf:description>
204	<pre><dcterms:w3cdtf>2014-07-17T15:42:40Z</dcterms:w3cdtf></pre>
205	
206	
207	
208	
209	
210	
211	
212	<pre><parameter constant="true" id="kb" metaid="COPASI3" name="kb" value="1.6E-10"></parameter></pre>
213	(annotation)

<ロ> < 回> < 回> < 目> < 目> < 目> のへで 13/41

Ontologies

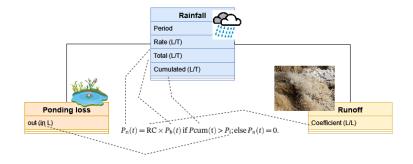
Conclusions

SBML: random example of an SBML model from the BioModels database

BIOMD000000531_url.xml

258	tofRules>
259	<pre><assignmentrule metaid=" 15d0c074-0652-4ed7-b795-9a1fd1a61655" variable="kat50"></assignmentrule></pre>
260	$$
261	<apply></apply>
262	<in></in> >
263	<apply></apply>
264	<pre><pre>cplus/></pre></pre>
265	<apply></apply>
266	<divide></divide>
267	<cn> 1 </cn>
268	<ci> kb </ci>
269	
270	<cn> 1 </cn>
271	
272	
273	
274	
275	/accignmentBule metaid="49080aa4-a7cc-4a7a-h7f7-h7ea59435fh4" variahle="v50t50">

Ontologies


Limitations of the domain models

- There are very many notations to learn
- Objects and arrows, but no way to specify how many outgoing arcs there may be
- Limited computational use among models
- Proliferation of incompatible modelling tools that are cumbersome to maintain

Ontologies

Conclusions

Rainfall questions - loose ends in the model

• What are the names of the relations? the constraints? The relevant attributes? And their data types?

Conceptual data models

Ontologies

Conclusions

Outline

2 Conceptual data models

4 Conclusions

Conclusions

Solutions to limitations of the domain models

- Devise one notation for all
- More expressive (more features) than only objects and arrows
- Computational support
- (Try to) Standardise to make tooling development 'economically' viable

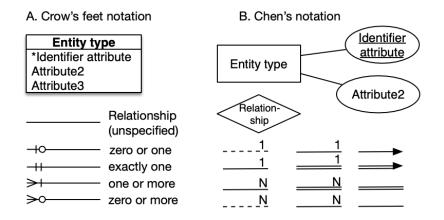
Conclusions

Solutions to limitations of the domain models

- Devise one notation for all
- More expressive (more features) than only objects and arrows
- Computational support
- (Try to) Standardise to make tooling development 'economically' viable
- \Rightarrow Conceptual data models

Ontologies

Conclusions

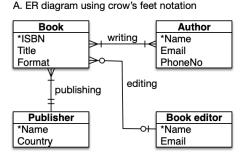

Conceptual data models

- A class of models that capture the information about the data that are to be stored in the prospective software system (and possibly manipulated)
- There are several conceptual data modelling language families and notations

Ontologies

Conclusions

Conceptual data models - Example of language elements



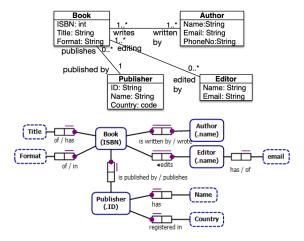
Note: no 'stock', 'flow' etc, but type of element for any subject domain

Ontologies

Conclusions

Conceptual data models – Example

B. Population examples

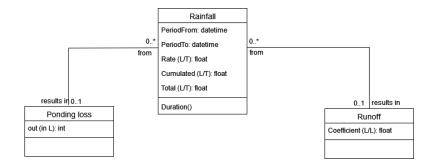


Conceptual data models

Ontologies

Conclusions

Same example in UML and ORM


Convert automatically between EER, UML, ORM, choose preferred notation: Braun G, Fillottrani PR, Keet CM. A Framework for Interoperability Between Models with Hybrid Tools, J of Intelli, Inf. Sys. 2023. 😑 + E = + E = + O Q (*

Conceptual data models

Ontologies

Conclusions

Rainfall, again — UML style

- Convert UML class diagram (semi-)automatically into program code
- Easier to communicate with other domain experts and programmers what's in the code
- Easier to reuse with other math formula that use same entities

Limitations of conceptual data model models in theory or practice

- For one specific application only need to re-do it for each application, integration issues
- Solutions to recurring modelling issues re-invented time and again (and same mistakes made)
- Mostly informal diagrams that suffer from ambiguity (intentionally or not)
- Limited authoring guidelines¹
- Some quality control mechanisms

¹ Mainly the CSDP for ORM [Halpin(2001)]; an example for EER: http://www.meteck.org/modellingbook/DanceSchoolExample.html; TDD proposal for UML [Tort and Olivé(2010)]

Conceptual data models

Ontologies

Conclusions

Outline

Models and terminology

2 Conceptual data models

<ロ> < 四> < 回> < 三> < 三> < 三> < 三) 는 크) 는 크) 는 크) 는 크) 는 크) 으 Q (* 24/41

Solving limitations of conceptual data model models with ontologies

- Model for a subject domain, of use across multiple applications for use, reuse, integration
- Provides solutions to recurring modelling issues, saves re-inventing
- Logic-based, as precise as permitted within the language
- Multiple quality control mechanisms (theories, methods, techniques, tools)

Conceptual data models

Ontologies

Conclusions

An ontology...

Simplified graphical rendering of a fragment of most popular one:

http://geneontology.org/docs/
ontology-documentation/

(informally) an ontology is an engineering artefact in machine-processable format, which contains the entity types, their relationships, and constraints that hold over them of a particular (subject) domain.

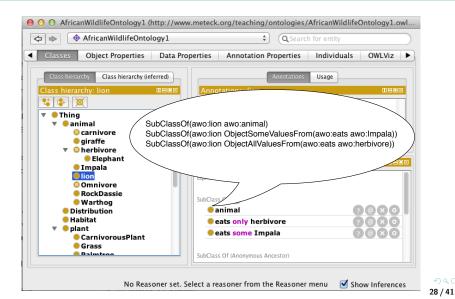
Conceptual data models

Ontologies

Conclusions

27/41

In an ontology development environment (ODE)...

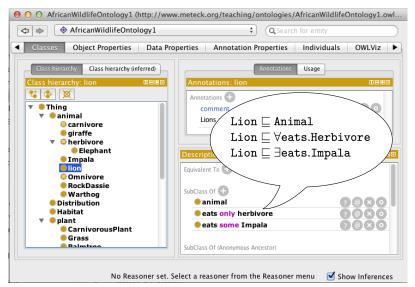

Classes Object Properties Data Pr	roperties Annotation Properties Individuals OWLViz
Class hierarchy Class hierarchy (inferred)	Annotations Usage
Class hierarchy: lion 🛛 🔲 💷 🗵	Annotations: lion
21 🔹 🐼	Annotations +
• • Thing	
v onimal	
Garnivore	Lions are animals that eat only herbivores.
😑 giraffe	
herbivore	
😑 Elephant	Description: lion 🛛 🕮
Impala	
<mark>● lion</mark>	Equivalent To 🕀
BockDassie	
Warthog	SubClass Of 🛨
 Distribution 	e animal animal
Habitat	eats only herbivore
🔻 😑 plant	eats some Impala
CarnivorousPlant	
Grass Almtree	
- Daimtroo	SubClass Of (Anonymous Ancestor)

Conceptual data models

Ontologies

Conclusions

... happenings behind the GUI ...



Conceptual data models

Ontologies

Conclusions

... and underlying that serialisation

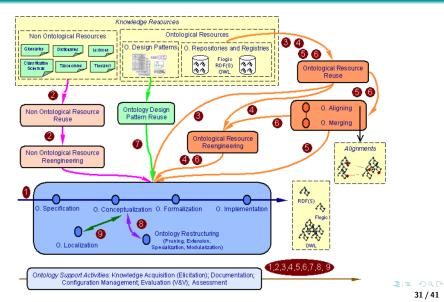
Why ontologies?

- For their own sake, possible future use
- Representing a scientific theory precisely
- Facilitating communication among humans
- Enabling communication between software applications or modules in a complex system
- Used for and in many different ontology-driven information systems: a.o., data integration, recommender systems, NLP, textbook enhancements, Q&A systems)

Conceptual data models

Ontologies

Conclusions

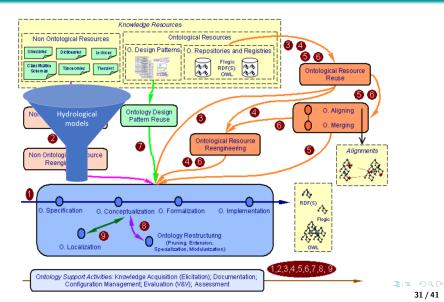

Why ontologies?

- For their own sake, possible future use
- Representing a scientific theory precisely
- Facilitating communication among humans
- Enabling communication between software applications or modules in a complex system
- Used for and in many different ontology-driven information systems: a.o., data integration, recommender systems, NLP, textbook enhancements, Q&A systems)
- Examples: finding 'new' knowledge (bio-chemistry) [Wolstencroft et al.(2007)] save research time (ecology) [Madin et al.(2008)] semantic comparisons of text (healthcare) [Reese et al.(2023)], energy-optimised building system control [Pruvost and Enge-Rosenblatt(2022)] etc.

Conceptual data models

Ontologies Conclusions

Scenarios for building Ontology Networks (NEON methodology)

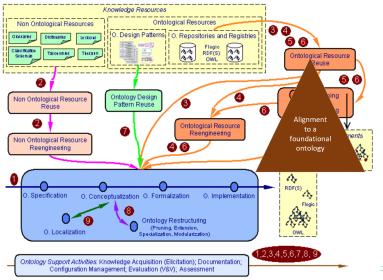

31/41

Conceptual data models

Ontologies

Conclusions

Scenarios for building Ontology Networks (NEON methodology)

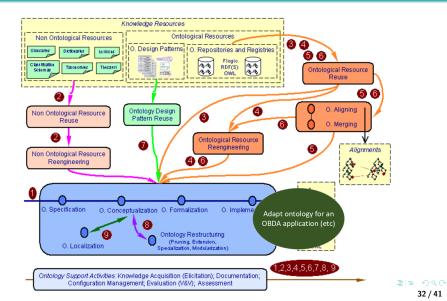


Conceptual data models

Ontologies

Conclusions

NeOn – some extensions


≣|≡ ∽ < ભ 32 / 41

Conceptual data models

Ontologies

Conclusions

NeOn – some extensions

Ontology development at the 'micro-level' level (cf. macro)

- Figure out what to add: which vocabulary and axioms
- Need to get those axioms into the ontology somehow

Ontology development at the 'micro-level' level (cf. macro)

- Figure out what to add: which vocabulary and axioms
- Need to get those axioms into the ontology somehow
- The actual modelling, or *ontology authoring*, using micro-level guidelines, methods, and tools
 - Methods, such as reverse engineering and text mining to start, OntoClean and $\rm ONTOPARTS$ to improve an ontology's quality
 - Tools to model, to reason, to debug, to integrate, to link to data

Align to it – manually or assisted with D3 or BFOClassifier

• • •	BFO 2.0 Classifier	
ile Edit Help	p	
OWL File:	/Users/mariakeet/ontologies/AWO/AfricanWildlifeOntology1.owl	Browse
Class Label:	Lion	Confirm
Question Histor	ry	
Can Lion ex Selected A Does Lion all Selected A Is Lion a colle	Answer:"Persist in time; e.g., a ball" isto nits own or is Lion a property of another entity or depends o Answer:"Exist on its own; e.g., a sandwich" ways have some matter (space and mass) as a part that persists Answer:"Always; e.g., a coffee mug' ection of disjoint self-standing single objects? (Lion ⊂ Material Ent Answer:"No"	in time? (Lion ⊑ Independent Continuant)
ls Lion a prop	per part of an object, rather than a member of?	
No; e.g., a pl	ate	
No; e.g., a pl	ate	
	upper portion of a cake	
None of the a	above	
ion ⊑ Materia		Insert Axiom

Bernabé C, Keet CM, Khan ZC, Mahlaza Z. A method to improve alignments between domain and foundational ontologies. FOIS'23.

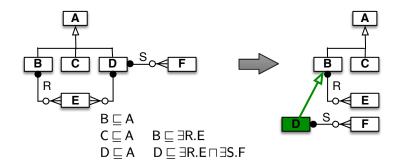
Conceptual data models

Ontologies

Conclusions

Test-driven development

TDDOnto2:		
New test		
PoolBraai SubClassOf: Pool and Braai		
Add Evaluate		
Axiom	Result	
offeredBy some Accommodation SubClassOf Facility	Absent	
ServiceObject EquivalentTo Attraction and Facility	Absent	
ServiceObject EquivalentTo Attraction or Facility	Entailed	
PoolBraai SubClassOf Braai and Pool	Incoherent	
Evaluate all Evaluate selected Rer	move selected	

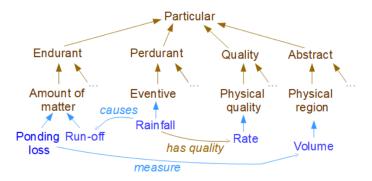

Davies K, Keet CM, Lawrynowicz A. More Effective Ontology Authoring with Test-Driven Development and the TDDonto2 tool. Int J on Artif Intell Tools, 2019.

Conceptual data models

Ontologies

Conclusions

A note on that automated reasoning - Illustration



Conceptual data models

Ontologies

Conclusions

Rainfall: sample *sketch* and some axioms for an ontology

Rainfall \sqsubseteq Eventive ('rainfall is an event'), Rainfall \sqsubseteq \exists causes.Runoff ('each rainfall event causes some amount of runoff'), PondingLoss $\sqsubseteq = 1$ measure.Volume ('each ponding loss has exactly one measure of volume' (of the loss)),

Conceptual data models

Ontologies

Conclusions

Limitations of ontologies?

<ロ> < 回> < 回> < 目> < 目> のへで 38/41

Conceptual data models

Ontologies

Conclusions

Limitations of ontologies?

- Yes, there are...
- ... but not part of this talk

Conceptual data models

Ontologies

Conclusions

Feature-based comparison

	Feature							
Model type	Main aim or function	Where used (mainly)	Development methodologies	Software assistance	Language freedom	Precision		
Mind Maps	Basic structuring of a topic	Education, business	A little	Yes, many drawing tools	Limited	Low		
Biology models	Visualise biology knowledge (structures and processes)	Biology research, textbooks	No	Drawing tools, some runtime usage (simulations)	Ranges from self-imposed to complete freedom	Low/ medium		
Conceptual data models	Capture characteristics of data to be stored and processed in an program	Analysis and design stage of database and program development	Yes	Drawing tools, limited runtime usage	Ranges from standardised languages to partial freedom to design one	Medium		
Ontologies	Represent knowledge of a subject domain precisely and in a computer processable way	Computing and IT (Data integration, Enterprise systems, Web search, etc.)	Yes, many	Editors (diagram, text), runtime usage	Ranges from standardised languages to partial freedom to design one	High (but medium/ low is possible)		
Ontology	Characterise one small aspect of interest precisely and in much detail	Research	No	No	Yes, can define as one goes along	High/ Very high		

Table 7.1 Comparison of types of models along a set of properties

(also from the 'what and how' book)

Conceptual data models

Ontologies

Conclusions ●○

Outline

Models and terminology

2 Conceptual data models

3 Ontologies

< 고 > < 쿱 > < 트 > < 트 > 토 = < 오
 40/41

Recap and future work

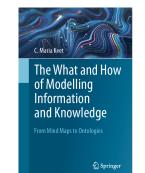
- Representing knowledge of the domain, semantics of the equations, declarative-imperative separation
- Different types of declarative models: diagrams, conceptual data models, ontologies
- Which one suits best depends on the task

Recap and future work

- Representing knowledge of the domain, semantics of the equations, declarative-imperative separation
- Different types of declarative models: diagrams, conceptual data models, ontologies
- Which one suits best depends on the task
- Opportunities for declarative hydrological modelling
- Repurpose some of the design steps from computing to hydrological modelling?
- Use the resulting models for ontology and conceptual model development

Acknowledgments

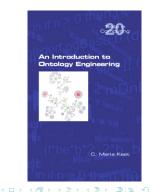
- Collaborators on some of this work: Pablo Fillottrani (Universidad Nacional del Sur, Argentina), Zubeida Khan (CSIR, South Africa), Agnieszka Ławrynowicz (PUT, Poland), César Bernabé (LUMC, The Netherlands), Zola Mahlaza (UCT)
- Current and former students on some of this work: Kieren Davies
- Funding of this secondment to HSM:



◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃|∃ ◇Q⊘

Thank you!

Questions?


- My book on modelling,
- aimed at a broader audience, and
- available in hardcopy and eBook
- https://link.springer.com/book/ 10.1007/978-3-031-39695-3

Thank you!

Questions?

- My textbook on ontology engineering (aimed at computer scientists)
- Free pdf (and slides and exercises) at https://people.cs.uct.ac.za/ ~mkeet/OEbook/
- Also available in paperback (College Publications):

References I

T.A. Halpin.

Information Modeling and Relational Databases. San Francisco: Morgan Kaufmann Publishers, 2001.

Joshua S. Madin, Shawn Bowers, Mark P. Schildhauer, and Matthew B. Jones. Advancing ecological research with ontologies.

Trends in Ecology & Evolution, 23(3):159-168, 2008.

C. Masolo, S. Borgo, A. Gangemi, N. Guarino, and A. Oltramari.

Ontology library.

WonderWeb Deliverable D18 (ver. 1.0, 31-12-2003)., 2003. http://wonderweb.semanticweb.org.

Hervé Pruvost and Olaf Enge-Rosenblatt.

Using Ontologies for Knowledge-Based Monitoring of Building Energy Systems, pages 762–770. doi: 10.1061/9780784483893.094.

J. Reese et al.

Generalisable long covid subtypes: findings from the nih n3c and recover programmes. *eBioMedicine*, 87(104413), 2023.

DP Solomatine and T. Wagener.

Treatise on Water Science, Vol 2, chapter Hydrological Modeling, pages 435–457. Elsevier, 2011. doi: 10.1016/B978-0-444-53199-5.00044-0.

References II

Mari Carmen Suarez-Figueroa, Guadalupe Aguado de Cea, Carlos Buil, Klaas Dellschaft, Mariano Fernandez-Lopez, Andres Garcia, Asuncion Gómez-Pérez, German Herrero, Elena Montiel-Ponsoda, Marta Sabou, Boris Villazon-Terrazas, and Zheng Yufei. NeOn methodology for building contextualized ontology networks. NeOn Deliverable D5.4.1, NeOn Project, 2008.

Albert Tort and Antoni Olivé.

An approach to testing conceptual schemas. Data & Knowledge Engineering, 69:598–618, 2010.

K. Wolstencroft, R. Stevens, and V. Haarslev.

Applying OWL reasoning to genomic data.

In C.J.O. Baker and H. Cheung, editors, *Semantic Web: revolutionizing knowledge discovery in the life sciences*, pages 225–248. Springer: New York, 2007.