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1 Introduction

An active area of research in knowledge representation concerns the nature of the part-
whole relation between entities or instances, its representation in a (formal) language,
and its translation to support in software systems. The sub-disciplines it traverses in-
clude philosophy, (applied) ontology and ontologies, linguistics, conceptual modelling,
formal languages, and software design & implementation. Depending on one’s back-
ground, points of view on importance of the parthood relation ranges from essential
and equally important on a par with the taxonomic subsumption relation to that there
is no real added value. The latter opinion tends to be due either to misunderstanding
of the nature of the parthood relation and its variations or that part-whole relations
can be accommodated for with set theory anyway (which, as will become clear below,
is not always true). In this tutorial, we highlight some of the main aspects and re-
search trends regarding the parthood relation and point toward several open problems
awaiting a solution.

The first part consists of philosophical aspects (called mereology) and several
mathematical properties of theories of parthood (§2), after which we introduce the
contentious notion of types of parthood relations in §3. This is followed by represen-
tation of part-whole relations in several conceptual modelling and ontology languages
like Description Logics, UML, ER and ORM (§4). A brief discussion of arguments
on representing part-whole relations in knowledge representation languages, or not,
is included in §5. The last section (§6) summarizes and provides several suggestions
for further research. Due to space and time constraints, this tutorial is necessarily
incomplete, therefore you are strongly advised to consult the references, which go into
detail of particular sub-topics that are covered only briefly here.

2 Mereology and mathematical properties of mereological theories

Mereology, the ontological investigation into the part-whole relation, mainly dates
back to Leśniewski [23] in the early 20th century. From the 1980s up till now this
research has greatly expanded, with important publications by Peter Simons [37] and
Achille Varzi [44], among others. Varzi [44] provides an overview of the more and

? This technical report contains background information and further references accompanying the
tutorial that bears the same title as this TR, held at Free University Bozen-Bolzano, Italy, in
October 2006.
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less constrained versions of mereology from the viewpoint of philosophy, which is
summarized by Guizzardi [12] from the perspective of conceptual modelling. Here,
we first summarize the main basic aspects of mereology as described by [44] in §2.1,
which is augmented with a comparison with set theory as elaborated on by [30] in
§2.2. Afterward, some other extensions, variations and gaps pass the revue in §2.3,
including initial steps from the philosophical aspects toward computation and toward
applicability to specific subject domains.

2.1 Basic principles up to GEM

The very lowest common denominator concerning the parthood relation, called Ground
Mereology and abbreviated as M, is that it is a relation capturing a partial order that
is always reflexive (1), antisymmetric (2), and transitive (3) and all other versions
share at least these constraints1. This, however, does not mean (1-3) are uncontested;
in particular transitivity of the part of receives attention, to which we return later.

part of(x, x) (1)

// everything is part of itself

(part of(x, y) ∧ part of(y, x)) → x = y (2)

// two distinct things cannot be part of each other, or:

// if x is part of y and y is part of x, then x and y are the same thing

(part of(x, y) ∧ part of(y, z)) → part of(x, z) (3)

// if x is part of y and y is part of z, then x is part of z

With these three basic formulas that take part of as primitive relation (i.e., it does
not have a definition), several other mereological predicates can be built. A common
one is the definition of proper part as (4), from which asymmetry, and irreflexivity
follows; thus, x is not part of itself, if x is part of y then y is not part of x, and if x is
part of y and y part of z then x is part of z. Note that in some mereological theories,
proper part is taken as primitive relation.

proper part of(x, y) , part of(x, y) ∧ ¬part of(y, x) (4)

Six more predicates can be introduced, of which overlap (5) and overcross (7) tend
to be more often mentioned, although underlap (6) is more often used in e.g. bio-
ontologies.

overlap(x, y) , ∃z(part of(z, x) ∧ part of(z, y)) (5)

// x and y ‘share’ a piece z (see also overcross); is reflexive and symmetric

underlap(x, y) , ∃z(part of(x, z) ∧ part of(y, z)) (6)

1 All formulas are universally quantified, unless otherwise specified.
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// x and y are both part of some z; is reflexive and symmetric

overcross(x, y) , overlap(x, y) ∧ ¬part of(x, y) (7)

// x and y overlap, but x is not a part of y

undercross(x, y) , underlap(x, y) ∧ ¬part of(y, x) (8)

// x and y underlap, but y is not part of x

proper overlap(x, y) , overcross(x, y) ∧ overcross(y, x) (9)

// combines proper parthood with overlap

proper underlap(x, y) , undercross(x, y) ∧ undercross(y, x) (10)

// combines proper parthood with underlap

Now we can start creating extensions. The first one has to do with the argument that
if some y has a proper part x, then there should be some remainder because x is ‘less’
than y. There are two ways to add this to M: through weak (11) and strong (12)
supplementation.

proper part of(x, y) → ∃z(part of(z, y) ∧ ¬overlap(z, x)) (11)

// weak supplementation: every proper part must be supplemented by another, disjoint, part

¬part of(y, x) → ∃z(part of(z, y) ∧ ¬overlap(z, x)) (12)

// strong supplementation: if an object fails to include another among its parts,

// then there must be a remainder

The addition of the weak supplementation principle to the ground mereology is called
Minimal Mereology, abbreviated as MM, whereas the addition of strong supplementa-
tion is called Extensional Mereology, or EM. However, EM has some issues: because
(13) is a theorem of EM, it follows that non-atomic objects with the same proper
parts are identical (14) – but sameness of parts may not be sufficient for identity.
For instance, two objects can be distinct solely with respect to how their parts are
arranged, and one can make the distinction (or not) between an object and the mat-
ter constituting it, like a vase and the clay2. Consult [44] section 3.2 for examples,
discussion, and pointers to further literature.

∃z(proper part of(z, x) →
(∀z(proper part of(z, x) → proper part of(z, y)) → part of(x, y)))

(13)

(∃z(proper part of(z, x)) ∨ ∃z(proper part of(z, y))) →
(x = y ↔ ∀z(proper part of(z, x) ↔ proper part of(z, y))

(14)

Extending M in another direction, we look at the feature that a mereological domain
must be closed under various operations. There are two options: finitary operations,
2 With the multiplicative approach as taken by DOLCE [24], the vase and the amount of clay are

not identical because they each have different properties. They have, however, the same parts.
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which adds a C of closure, or unrestricted fusions, which adds the G for general
mereology, which we introduce now.

First, we have two operations: the mereological sum (also called fusion) and the
product. Given underlap (6), then there is a smallest entity z such that x and y are
only and fully part of z (15); likewise for overlap (5), there is a largest common entity
that is part of both x and y (16). For instance, a sugar pot as the mereological sum
of the cup and the lid, and the junction is the product of two intersecting roads.

underlap(x, y) → ∃z∀w(overlap(w, x) ↔ (overlap(w, x) ∨ overlap(w, y))) (15)

// mereological sum (fusion)

overlap(x, y) → ∃z∀w(part of(w, z) ↔ (part of(w, x) ∧ part of(w, y))) (16)

// mereological product

Adding (15) and (16) to M gives the CM, and adding it to EM gives CEM. CEM
supports definitions for x + y and x × y, which can be succinctly rewritten into (17)
and (18) for unique mereological sum of two underlapping entities and unique product
of two overlapping entities, respectively.

underlap(x, y) → ∃z(z = x + y) (17)

overlap(x, y) → ∃z(z = x× y) (18)

Similarly, we can add more closure postulates, like remainder, complementation, and
top. Adding bottom, on the other hand, is rarely done – except for good algebraic rea-
sons (see §2.2) – because it means postulating a null entity that is part of everything,
i.e. ∃z∀x(part of(z, x)), which is philosophically problematic.

Second, we take a look at unrestricted fusions, which will get us to GEM. Un-
restricted fusions, i.e. sums of arbitrary non-empty sets of objects (and consequently
also products) would need explicit reference to classes, by which we have to leave first
order theory. However, there is an alternative for permitting unrestricted fusions yet
stay within first order, which is by relying on an axiom schema with only predicates or
open formulas. Let φ be a property or condition, then for every satisfied φ there is an
entity consisting of all entities that satisfy φ (note: since there is a countable amount
of open formulas, there are countable many classes). Thus, unrestricted fusion (19)
can be added to M to give GM, which is known as Classical Mereology or General
Mereology.

∃xφ → ∃z∀y(overlap(y, z) ↔ ∃x(φ ∧ overlap(y, x))) (19)

// unrestricted fusion

Adding unrestricted fusion (19) to EM or an extensional strengthening of GM with
strong supplementation (12), then we get the General Extensional Mereology GEM.
The various possible mereological theories and how they relate are depicted in Fig.1;
a more comprehensive diagram is included as figure 2 in [43].
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Ground Mereology 
M

Minimal Mereology 
MM

Extensional Mereology 
EM

Closure Mereology 
CM

Extensional Closure Mereology 
CEM = CMM

General Mereology 
GM

General Extensional Mereology 
GEM = GMM

Fig. 1: Hasse diagram of mereological theories; from
weaker to stronger, going uphill (after [44]).

We can define the sum σ and product π in GEM, which enables one to succinctly
rewrite sum (20), product (21), remainder (22), complement (23), and universal indi-
vidual (24). See [44] sections 4.2 and 4.3 for further detail and discussion.

x + y = σz(part of(z, x) ∨ part of(z, y)) (20)

x× y = σz(part of(z, x) ∧ part of(z, y)) (21)

x− y = σz(part of(z, x) ∧ ¬overlap(z, y)) (22)

∼ x = σz(¬overlap(z, x)) (23)

U = σz(part of(z, z)) (24)

Given these basics, we can proceed to its mathematical analysis and some interesting
properties, which are described in the next section.

2.2 GEM and set theory

Set theory provides structural relations to abstract mathematical entities called sets
by using the is element of relation (see [19] for a brief online introduction, among
many sources and books). However, its grounding in reality is debatable due to the
many abstract ingredients, which mereology may overcome at least to some extent (see
e.g. the introduction of [6] for arguments and §5.2 below). Since mereological theories
are formulated in predicate logic (see above in §2.1), one can assess how they relate
to set theory from a mathematical perspective, comprehensively assessed by Pontow
and Schubert [30].
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Extensions Given GEM with its algebraic operators as introduced in the previous
section, fusion is inadequate from a mathematical and practical perspective because
it disallows summing an arbitrary collection in an infinite domain. Instead of using
“φ” as in (19), one can use second order logic and add formula (25). That is, let M be
a non-empty subset of a domain D, then there exists a sum z of the entities of M in
D such that for any entity w of the domain it holds true that w has an overlap with
z iff there exists an element of M that overlaps with w.

∃z∀w(overlap(z, w) ↔ ∃x(x ∈ M ∧ overlap(x,w))) (25)

// alternative characterization of fusion

The combination of (1-3), (12), and (25) is called Closed General Extensional Mereol-
ogy, denoted with GEM+. Note that (25) implies (19), hence GEM is a subtheory
of GEM+.

Recollecting the philosophical aversion of adding bottom, i.e. a null entity, because
ontologically there does not seem to be an entity that is part of all other entities, this
is undesirable from a mathematical perspective because it prevents models of such
theories from getting characterised as Boolean algebras. Thus, we add a unique least
element (26).

∃0∀z(part of(0, z)) (26)

// addition of the null element (bottom)

Adding (26) requires some additions to ensure non-trivial overlap overlap′, non-trivial
part of part of′, non-trivial proper part of proper part of′ and non-trivial atomicity
Atom′. That is, (5) needs an additional “∧z 6= 0” and so forth. As a knock-on effect, the
strong supplementation (12) and two fusions ((19) and (25)) have to be redefined with
their non-trivial counterparts. The addition of the null element to GEM+ gives us
Closed General Extensional Mereology with Null, abbreviated as GEM+0. Likewise,
GEM with null becomes GEM0.

A third variation concerns atomicity, with atom defined as (27). A mereological
theory commits to either that there are atoms (28) or entities are infinitely divisible
into parts (29); see also [44] section 5, and [42] who calls them discrete and continuous,
respectively3.

Atom(x) , ¬∃y proper part of(y, x) (27)

// indivisable entity: an atom has no parts

∀x∃y(Atom(y) ∧ part of(y, x)) (28)

// there are atoms

∀x∃y proper part of(y, x) (29)

3 Sowa also considers lumpy : some things are atoms, some are continuous. ∃xAtom(x) ∧ ∃y∀z(z ≤
y) → ∃w(w < z)).
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// entities are infinitely divisable, i.e. there are no atoms

The atomic variant adds an A to the abbreviation, and an atomless mereological
theory has an Ā added to the abbreviation.

Comparison Consider ZFC-set theory and recollect that a) for all sets x there exists
a set y which is not an element of x, and b) there exists an injective but no surjective
mapping from a set onto its power set. Also note the difference between the set the-
oretical level used for specification (‘outer perspective’) and the set theoretical level
within the model (‘inner perspective’) at the object level; sets belonging to the latter
will be prefixed with a “U -” and the U -element relation denoted with ∈U . Then, all
U -sets are elements of the set U which itself is not a U -set, and the U -element relation
∈U is a subset of U × U .

The obvious ‘mapping’ between set theory and mereology is to map the set theo-
retical inclusion “⊂” to the part of and the aim is now to try to find models of the
introduced mereological theories within a given universe of sets.

A first observation is, that with an interpretation (U,⊂U ) that contains the U -
empty set ∅, GEM and GEM+ cannot be satisfied, because they both lack the null
entity. On the other hand, with the bottom as in (26) that is included in GEM0

and GEM+0, this is valid under the considered set theoretical interpretation because
∅ is the set theoretical counterpart to (26). In addition, (1-3) also translate to valid
theorems of ZFC-set theory and proper parthood (4) translates to the ⊂U . Concerning
GEM+0, the non-trivial version of strong supplementation can also be derived from
ZFC-set theory: if a and b are U -sets and if a is not a U -subset of b then there exists a
U -element c of a which is not a U -element of b, thus, the U -set {c}U is a U -non-empty
U -subset of a but is U -disjoint from b. However, taking into account the non-trivial
version of the alternative fusion formula (25), then we can derive that there exists
a U -set b which is not U -disjoint from any other U -set c, but such a U -set b does
not exist (see [30] section 3 for details). Therefore, one can conclude that the axiom
scheme with the non-trivial version of the alternative fusion formula is not true in
the set theoretical interpretation. Due to the non-trivial fusion (hence also non-trivial
version of the alternative fusion), the considered set theoretical interpretation is not
a model of GEM0 and GEM+0 either.

Next, we consider a set theoretical interpretation that has a restriction such that
it is closed under the operations of binary U -union and binary U -intersection, whose
interpretation is denoted with (Ua,⊂Ua). Following Pontow and Schubert’s theorem 13
and its proof [30], (Ua,⊂Ua) is a model of AGEM0 (atomic GEM with null element).
Most notably, the non-trivial version of unrestricted fusion (19) is satisfied by this
interpretation. It is not the case that the non-trivial alternative fusion (25) is satisfied
by (Ua,⊂Ua) if U is infinitely countable (from the outer perspective) and if the set
{x ∈ U |x ∈U a} is an infinitely countable (from the outer perspective) subset of U .
As corollary, we get: if ZFC-set theory is consistent, there exists a model of GEM0

which is not a model of GEM+0 and there exists a model of GEM which is not a
model of GEM+.
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So, we still need to find a class of set theoretical structures such that also the
non-trivial version of the alternative fusion can be satisfied. To get this, we need the
power set P with an interpretation (P(a),⊂P (a)). This interpretation is a model of
AGEM0 and AGEM+0, because the non-trivial version of the alternative fusion is
true in (P(a),⊂P (a)).

Note that the converse question – if there exist models of set theory within mere-
ological structures – can be answered in the negative, because there does not exist a
greatest set in a universe of sets (see theorem 10 in [30]).

We also can assess if, and how, the models of the considered mereological theories
are related to Boolean algebras. Obviously, no model of GEM or GEM+ can be a
Boolean algebra because they miss the null entity. But GEM0 and GEM+0 carry the
structure of Boolean algebras and complete Boolean algebras, respectively. Also the
converse holds, i.e. that any complete Boolean algebra is a model of GEM+0. Consult
[30] for the theorems and proofs. Additional theorems and proofs can be found in [30]
(section 5) regarding the duality between mereological theories and set theoretical,
algebraical, and topological aspects, which is summarised in their theorem 34:

Theorem 34 ([30]).
(1) Any model of GEM+0 is isomorphic to the complete Boolean algebra of open regular

sets of a Boolean topological space. In particular, the operators of binary sum and
binary product are mapped to binary union and binary intersection respectively, while
the general sum and general product operators are mapped to the closure of arbitrary
union and the interior of arbitrary intersection, respectively.

(2) Conversely, in any topological space X the system of open regular subsets is a model
of GEM+0 with the interior of the closure of binary union as binary sum, binary inter-
section as binary product, and with the interior of the closure of arbitrary union and
the interior of arbitrary intersection as general sum and general product, respectively.

(3) Any model of GEM+ is isomorphic to the complete Boolean algebra of open regular
sets of a Boolean topological space where the empty set is removed from the system,
and conversely, the complete Boolean algebra of open regular sets without the empty
set of any topological space is a model of GEM+.

(4) Any model of GEM0 is isomorphic to a Boolean subalgebra of the complete Boolean
algebra of open regular sets of a Boolean space. This subalgebra is not necessarily
complete if ZFC is consistent.

(5) Any model of GEM is isomorphic to a Boolean subalgebra of the complete Boolean
algebra of open regular sets of a Boolean space where the empty set is removed. This
subalgebra is not necessarily complete if ZFC is consistent.

(6) Any model of AGEM is isomorphic to a Boolean subalgebra of the complete Boolean
algebra of open regular sets of a Boolean space X without the empty set and with the
additional property that the union of the atoms is a dense subset of X. This subalgebra
is not necessarily complete if ZFC is consistent.

(7) Any model of ĀGEM+ is isomorphic to the complete Boolean algebra of open regular
sets of a perfect Boolean space without the empty set, and conversely, the complete
Boolean algebra of open regular sets of a perfect Boolean space where the empty set is
removed, is a model of ĀGEM+.

(8) Any model of ĀGEM is isomorphic to a subalgebra of the complete Boolean algebra
of open regular sets of a perfect Boolean space where the empty set is removed. This
subalgebra is not necessarily complete if ZFC is consistent.

In short (and largely copied from [30] p135-136), there are links between mereological
theories, variations on GEM in particular, with set theory. Theories of GEM and
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GEM+ are not equivalent4 (provided that ZFC is consistent). Equivalence seemed to
have been tacitly assumed in literature where models of GEM and AGEM have been
classified as complete Boolean algebras without the null element, which is in general
only true for models of GEM+ and AGEM+ if ZFC is consistent. In GEM and
GEM+ the existence of a universal entity is stipulated by the respective fusion ax-
ioms while in set theory the existence of such an entity is contradictory, and in GEM
and GEM+ the existence of a least or empty entity is denied while the existence of
the empty set is an ingredient of set theory. Another important difference between
these theories is that in GEM and GEM+ there is no straightforward analogue to
the set theoretical is-element-of relation. Structures of GEM+ and complete Boolean
algebras differ only in one point: in contrary to structures of GEM+, in complete
Boolean algebras a least element is included. Further, models of GEM are Boolean
algebras which are not necessarily complete if ZFC is consistent. By Stone’s duality
theory, the models of GEM+ can be characterized as the complete Boolean algebras
of open regular sets of Boolean spaces without the empty set while models of GEM
are isomorphic to subalgebras of these Boolean algebras without the empty set. It is
remarkable that the respective isomorpisms map binary operations from the mere-
ologies to the respective binary set theoretical operations while infinite operators are
mapped to topological variants of the respective set theoretical operators.

Open issues are summarised in §6 below.

2.3 Some other extensions, variations, and gaps

The basics of mereology are considered insufficient for various reasons and have been
extended to meet a wide range of divergent aims. Philosophically, the major broad-
ening of basic mereology goes in the direction of mereotopology, i.e. combining part-
hood with space or location (e.g. [9] [45] and RCC8 (Region Connection Calculus)).
Mereotopological relations include, among others, adjacency, partial overlap, and (non-
) tangential proper part. Also, preliminary steps have been taken to somehow relate
mereology to granularity (e.g. [6] [21] [27]), which range from being the only theory for
granularity, to one of the relations to relate levels of granularity, to the opposite where
finer-grained parts are not real parts of a whole but are somehow a collective alike
the member-bunch or aggregation relation better known in conceptual modelling (see
below). It is outside the scope to go into the details of these two topics. Conversely,
instead of extending mereology, it can be incorporated as such in larger theoroes; for
instance, the foundational ontology DOLCE [24] adheres to (contains) GEM.

Another direction is to look at how mereology can be mapped onto decidable
fragments of first order logic with the aim to be able to use some mereological theory
for computation. This will be addressed in §4.1, because at present a sub-theory has
been formally mapped only to Description Logics [7], whereas mappings to other
4 Ontologically, they differ on one point: “in GEM only those collections of entities may be summed

up which can be characterized by an expression of the logical language, while in GEM+ for any
collection of entities a general sum is defined. From the mathematical viewpoint there is one more
important difference between GEM and GEM+, namely that only the axiomatics of GEM can be
expressed in the language of first order predicate logic related to the symbol set SM while GEM+
needs second order logic expressions of this language” [30] p135.
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conceptual and computational languages do not necessarily adhere to mereology (see
§4). The latter is in no small part due to the ‘interference’ of cognitive aspects and, to
some extent, the ‘meddling’ of meronymy (part-whole relations motivated by its use
in natural language) in mereology proper. Active discussions on mereology-meronomy
tend to end up zooming in on two themes: (in)transitivity and types of parthood-
relations (see §3). This does not imply mereology proper has no particular practical
relevance for linguistics and conceptual modelling, but requires further analysis and
disambiguation, which will be introduced in §3 and §4.

A third avenue is to investigate how actually the ‘some arbitrary domain’ of mere-
ology and mereotopology can be used in specific subject domains. It is this author’s
impression (or bias), that attempts focus mainly on using theories of mereology for
the biological and biomedical domains (e.g. [13] [39] [38] [34] [35] [40])5. For instance,
Smith et al [40] have developed the Relationship Ontology for biomedical ontologies,
which contains informal and formal definitions for several mereological and mere-
topological relations on both the instance level and the class level, has constraints
on the relata (being endurants, perdurants, or spatial regions), are time-indexed for
endurants, and the part of relation between classes uses the ‘all-some’ construction.
The latter has the following definition for endurants (taken from [40] and amended
for reasons of clarity):

Definition (parthood between classes). X part of Y =def for all x that are instances of
X, at time t, if Xxt then there is some y (that is an instance of Y and where X and Y are
distinct) such that Y yt and x part of y at t.

This means that all Xs, whenever they exist, exist as parts of Y s, according to [40].
With such a definition, one can create a plethora of other parthood relations, like
temporary parthood, an X initial part of Y (every x begins to exist as part of some
y), or drop the time component and let X and Y be perdurants. It leaves the door
open for a more liberal definition where some X is part of some Y and where part X
may outlive whole Y .

Arguably, there are ‘gaps’ or blank spots in mereology. How many variations, or
versions, of the parthood relation are there? What about the inverse relation has part?
How do the parts of a whole relate to each other? Linguistic analyses, conceptual
modelling languages, and domain modelling (be it ontology development or the con-
ceptual analysis stage in software development) struggle to accommodate more part-
whole aspects than mereology seems to cover for, and there are as many suggestions,
workarounds and (partial) solutions on offer. This is the topic of the next sections.

3 Types of part-whole relations

Contrary to the straightforward mereological theories with the transitivity of the
part of relation, extensions and modifications have been proposed to a) accommo-
date different types of parthood relations and b) admit intransitivity in some cases of

5 In contrast with the part-whole relation in conceptual modelling languages, which is largely focussed
on the enterprise domain.
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part-whole relations. See e.g. [20] [29] [46] for some discussion on the transitivity of
the parthood relation. On closer inspection, it appears that in case of different types
of part-whole relations, different kinds of universals are related, and, provided one
makes the required distinctions, transitivity still holds (see also [46]). For instance,
it is common to relate a process to its part-processes as involved in to distinguish it
from part of between endurants (object types). Each type of part-whole relation then
has to be extended with constraints on the participating object types, alike

involved in(x, y) , proper part of(x, y) ∧ Process(x) ∧ Process(y) (30)

Other variants include relating object types spatially through the part-whole relation,
denoted as contained in [7] or located in for relating spatial (geographical) objects.
However, these labels can be deceptive, because in some cases the relata refer to the
spatial region only, which is an abstract entity, but not the entity that occupies the
region. For instance, Book contained in Bag may refer to the entities themselves or
to regions in space with x, y, and z coordinates. Also, what some authors consider
to be ‘process’ needs qualification. In the DOLCE foundational ontology, process is
a subtype of perdurant6, where perdurant is generally considered to be equivalent to
occurrent, which in turn is considered informally to be a synonym with process; but
these different assumptions can make the understanding of a involved in relation in-
consistent. Specifying subtypes of parthood relations that constrain the relata requires
commitment to a foundational (top-level) ontology to ensure unambiguous definitions
of those parthood relations.

An important distinction exist between the mereological part of relation and
meronymic part-whole relations in linguistics: the latter is not necessarily transitive
and may not fit within any mereological theory. For instance, member of, also referred
to as “member-bunch” [29], is an intransitive meronymic part-whole relation; like play-
ers are members of a rugby team, probably member of that team’s club, but as player
certainly not member of the rugby clubs federation. We illustrate (in-)transitivity of
several mereological and meronymic part-whole relations in the following examples.
The the names of the relations are extended or modified in most examples in order to
indicate their ‘type’ other than just ‘part-of’.

Example To clarify what is being part of the whole and how, we have extended the la-
bels of the relation in most examples, such that the (in-)transitivity can be clear from the
readings.

? - Centimeter part of Decimeter
- Decimeter part of Meter
therefore Centimeter part of Meter
- Meter partOf SI
but not Centimeter part of SI, because meter is actually a member of the Système
International d’Units.

? - Vase constituted of Clay
- Clay has structural part GrainOfSand
but not Vase constituted of GrainOfSand

? - CellMembrane structural part of Cell
- Cell contained in Blood
but not CellMembrane structural part of Blood

6 Other perdurants belong to categories like event, state, achievement and accomplishment.
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- Receptor structural part of CellMembrane
therefore Receptor structural part of Cell

? - Employee member of Company
- Company located in Bolzano
therefore Employee located in Bolzano? but not Employee memberOf Bolzano

? - ReceptorBindingSite regional part of Receptor
- Receptor functional part of SecondMessengerSystem
therefore ReceptorBindingSite functional part of SecondMessengerSystem?

One can extend these examples by taking into account if the relation is mandatory or not,
and if their inverse relations hold. ♦

During conceptual modelling of real subject domains these considerations, and con-
fusions, are salient aspects in the modelling exercise. For this reason, we first look
into treatise by Odell [29] to clarify several aspects. This contribution is well-known
in Object-Oriented conceptual modelling, hence the approach is a ‘bottom up’ one
as opposed to the original departure of mereology. Afterwards (in §3.2), we return to
taxonomies of types of parthood relation.

3.1 Part-whole relations and Odell’s aggregations

It is important to first make the switch to engineering usefulness here; what goes on
in engineering can at times be useful to make clarifications of theoretical approaches,
and even may induce avenues for research to improve theories. In addition, sometimes
things just work in practice – well, sort of and possibly sufficiently well7 – even though
purist likely will disagree. On the other hand, it is a good exercise for mereologists
to analyse relations that are informally grouped under the heading of part-whole
relations. Odell’s suggestions for part-whole relations are summarised in Table 1, and
discussed in the remainder of this section.

Table 1: Odell’s types of part-of relations.

Type of part-of Explanation

component – integral object Discrete type of part-whole relation with atoms

material – object Constitution of objects

portion – object a) some amount of matter is part of the whole, and
b) scale-based partonomic relations

place – area Where part-place cannot be separated from the whole-area

member – bunch Whole bunch is generally denoted with a collective noun
and its members can change over time

member – partnership Like member-bunch,
but changing a member does destroy the whole

7 Permitting a mild digression: that it ‘sort of’ works and possibly sufficiently does not mean mere-
ology is implemented properly (see also §4), but some argue that it is a so-called 80-20 situation,
where the relatively easy bit of parthood relations have passed the revue, but to do it well and
address the remaining 20 costs too much. Conversely, it may be that only 20% is addressed and
the 80% still has to be uncovered and implemented but that conceptual modelers are not aware of
it and therefore do not realise what they are missing.
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The first type of aggregation Odell identifies within the context of proposing
them for inclusion in the class diagrams of the Unified Modeling Language (UML),
is component-integral object, which corresponds to the (structural) part of relation.
The second one, “material-object” is ontologically not a mereological relation, because
it deals with constitution of objects, like a vase is constituted of clay [24].

Third, portion-object is ambiguous, where Odell gives examples like “a slice of
bread is a portion of a loaf of bread”, or meter part of a kilometer [29] (and so forth
for other arbitrary scales). Ontologically, we have two separate cases here: the first
deals with a relation that some amount of matter is part of the whole, like a sip of
wine is (or was) part of the wine in my glass of wine. In how many sips of wine can
the wine in my glass be ‘partitioned’? These sips are portions, but not parts. These
type of objects are commonly indicated with mass nouns as opposed to count nouns,
i.e. amounts of matter in DOLCE [24] as one does not refer to 1 wine, 2 wine etc,
but one sip of wine, two portions of mashed potatoes, three servings of pudding and
so forth. One caution to observe, is that an entity referred to with a mass noun does
not imply that it is ontologically an example of portion-object. Note also that this is
different from the sorites paradox [41], also known as the heap problem, which has to do
with vagueness, not granularity or mereology. The other issue with portion-object, is
that of scale-based partonomic relations, which is distinct from the amount of matter
and whole entity that is categorised as of the same type. With measurements, one
actually can count; moreover, it is an essential feature one can determine in advance
what the parts are and how many of them there are (like 10dm go in 1m). There
is not some fuzzy Day with a fiat boundary, but it has 24 hours as its parts8. That
Odell adds homeomericity with “similarity between a portion and its whole” as a
characterising property does not solve which ontological meaning should be given to
the portion-object type of aggregation, but other examples Odell presents suggest the
first interpretation.

Fourth, there is the “place-area” type of aggregation where the part-place object1
occupies cannot be separated from the whole-area object2, where object1 is physically
smaller than, and part of, object2. One can refine this aggregation to be one of con-
tainment or location. With contained in and located in, we make the minor distinction
between 3D spatial containment, like mitochondrion in cell or toolbox in the trunk of
a car versus those that can be ‘mapped’ 2D, like oasis-desert or the region Alto Adige
in Italy (province-country).

The fifth type is “member-bunch”, which, as mentioned above, is not a mereological
relation because it is not transitive. The sixth aggregation type “member-partnership”
puts another constraint on the fifth type, such that changing a member does destroy
the whole. Although not mentioned by Odell, this association (relation) requires to
have not only a cardinality constraint of 2 for e.g. a marriage and Dick und Doof,
but also constraints on which instances are allowed to participate in the partnership
(e.g. only Stan Laurel and Oliver Hardy can make the partnership of Dick und Doof).
However, one can also mode this as participates in, where a marriage is a certain

8 A digression into assessing the ontological nature of each type of (SI) measurement scale is beyond
the current scope.
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perdurant in which two persons participate. Note that the member-partnership put a
constraint on specific individuals participating in the relation, which is an aspect not
addressed in mereology.

Summarising, this leaves component-integral object (proper part of), place-area
(located in), option b of portion-object, and member-bunch as types of part-whole
relations. The first two can be categorised as simplified descriptions of mereology and
mereotopology respectively; simplified, because it it not clear regarding constraints
that, for instance, the component must be part of the integral object and if it can exist
as component of that (type of) integral object only (it is ignorant about existential,
mandatory and contingent parts). Member-bunch is semantically a different type of
part-whoel relation.

3.2 A taxonomy of part-whole relations

Odell’s proposal for part-whole relations consists of a list of relations, but efforts have
gone into constructing a taxonomy of part-whole relations. The first proposal, moti-
vated by linguistic use of ‘part’, i.e. meronymy, was made by Winston, Chaffin and
Herrmann [48]. Several articles deal with analysing the WCH taxonomy and modelling
considerations (e.g. [1] [11] [12] [29]). For instance, Gerstl and Pribbenow [11] prefer
a “common-sense theory of part-whole relations”, motivated by differences in compo-
sitional structure of the whole compared to external to the whole and allows for “dif-
ferent views on the entities” [11](p888). Gerstl and Pribbenow reduce the six types of
part-whole relations of WCH into three: component-complex, element-collection, and
quantity-mass. This has been improved upon by Guizzardi [12], who distinguishes
“three types of conceptual parthood”, being sub quantity of, sub collection of, and
member of. The sub collection of is a set-subset relation, and not strictly a mereolog-
ical part-of; on the other hand, this aspect can be satisfactorily addressed with the
previously discussed mathematical analysis in §2.2. Guizzardi also offers criteria for
each as opposed to example-based (ch5 and ch7 of [12]). In addition, he extends the
investigation with Vieu and Aurnague’s linguistically motivated functional parthood
relations [47], which have ontological issues of their own (the notion of ‘function’ that
is).9

To clarify these distinctions, Keet [22] developed a simple taxonomy of part-whole
relations, which is depicted in Fig.2. It has a major distinction between mereological
and meronymic part-of; the major reasons why this ontological distinction exist has
to do with transitivity of the parthood relation, which was illustrated in the example
above: mereological part-of relations are transitive, meronymic not necessarily. The
member-bunch, sometimes collection and subsumed by the liberal term aggregation,
belongs to the meronymic branch and is labelled with member of. sub collection of
is not included because of its set-theoretical emphasis; if added, then it is subsumed
by Meronymic relation. What the figure does not show is that the ‘spatial’ is not
in the sense of abstract region. Attempts to integrate this taxonomy with DOLCE
9 Guizzardi also makes explicit the distinctions between essential parts (existential dependence),

mandatory parts (generic constant dependence), and contingent parts. We return to this in the
UML section (§4.2) because it does not affect a top-level taxonomy of types of part-whole relations.
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foundational ontology (as tested with its OWL version in Protégé) would fail the
consistency check & classify taxonomy if the automated reasoner would have the
capability to reason over a hierarchy of relations (called RBox in Description Logics):
functional parthood cannot be properly represented as differentiating from s part of,
and although contained in does have its relata (domain and range) constrained to
physical object, located in relates regions, which are in another branch in the DOLCE
ontology and would be inconsistent unless the spatial part of has PT s as its relata
(which in turn would make it equivalent to the Mereological part of ). Alternatively,
one may prefer to create multiple inheritance such that contained in is subsumed by
both s part of and spatial part of. Or take another foundational ontology (cf. SUMO,
BFO, OCHRE, GOL) that will suit this taxonomy. In short, although this version is
more comprehensive and makes several ontologically justified distinctions, it is still up
for debate, improvement, and possible extensions.

 

Part-whole relation 

Meronymic relation Mereological part-of 

member-of constituted-of sub-quantity-of participates-in 
involved-in spatial-part-of 

f-part-of 

s-part-of 

located-in contained-in 

Fig. 2: Taxonomy of basic mereological and meronymic part-of relations. s-part-
of = structural part-of; f-part-of = functional part-of. See text for details on the
relata of the relations.

Reflecting on the plethora of types of part-whole relations and the ‘clean’ mereo-
logical theories, mereology can help assessing what is and what is not a true parthood
relation and aids structuring the relations, but from the moment one starts looking at
the relata, i.e. the kind of entities that stand in a part-whole relation to each other,
other aspects have to be taken into account, like ontological categories of the types of
entities and the (linguistic) use of parthood.

4 Part-whole relations in conceptual modelling languages

Considering the variations in mereological and meronymic part-whole relations, it is
useful to look into how the various conceptual data modelling languages treat such
relations, which varies for each language and user community. It is also known under
the term aggregation relation, although aggregation differs from part-whole relations.
Subsets can be ‘aggregated’ into larger sets, but the set-subset semantics is not the
same as the formal semantics of mereology, as we have seen in §2.2, and the aggregate
doe snot necessarily correspond to an entity in reality. Further, at times the intention
is to model a mereological part of instead of just grouping entities, but the language
does not permit it fully or only with ambiguous semantics. In this section we take
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a closer look at four languages and how they fare regarding the part-whole relation:
Description Logics (in §4.1), UML class diagrams (§4.2) and EER and ORM (§4.3).

4.1 Description Logics

Description Logics is more often used as a knowledge representation language than as
conceptual modelling language, and if used for conceptual modelling it is normally used
‘in the background’ and restricted to DLR [10] [5]. As neither UML nor ER nor ORM,
which are mapped to DLR, implement part-whole relations properly (elaborated on
below), it may not matter that DLR does not have a comprehensive treatment of
part-whole relations – at present. It is, however, being investigated.

Some options to represent parthood relations in some DL language Besides
inadequately defining a part of or has part role in a DL, we can add a has part role
as �, model it as the transitive closure of a parthood relation (31) and define e.g.
Car as having wheels that in turn have tires [1] (32), such that it follows that Car
v ∃ �.Tire.

� .= (primitive-part)∗ (31)

Car
.= ∃ � .(Wheel u ∃ � .Tire) (32)

However, transitive closure in ALC is EXPTIME-complete. Alternatively, one can
define direct parthood ≺d, but this should verify the immediate inferior, which makes
the language undecidable [2]. Schulz et al [34] have developed a workaround for ALC
to get to reason with transitive parthood relations. They remodel transitive part-of
relations as is a hierarchies using SEP triplets. The three core items are the structure-
concept node that subsumes one (anatomical) entity, called entity node, and the parts
of that entity (the p-node). The is a hierarchy is then built up by relating the P-node
of a whole concept D to the S-node of the of the part C, where in turn the P-node of
C is linked to the S-node of C’s part; see Fig.3. More formally, the definition of the
whole D is (33), by which one can derive its anatomical proper part C as (34).

DP
.= DS u ¬DE u ∃a-pp.DE (33)

CE v ∃a-pp.DE (34)

Around the same time, Sattler [33] showed that with some extensions to ALC, it
is possible to include more aspects of the parthood relation. These are: transitive
roles (that is, permit R+ ⊆ R), inverse roles to have both part-of and has-part, role
hierarchies to include subtypes of the parthood relation, and number restrictions to
model the amount of parts that go in the whole. This brings us to SHIQ.

The latest, and most comprehensive attempt to represent parthood relations in
DL is by Bittner and Donnelly [7], who approach the problem starting from the FOL
characterisation and subsequently limiting its comprehensiveness and complexity to
fit it into a DL language, although it is unclear if their L∼Idt is decidable. In their
theory DL-PCC, several constraints and definitions cannot be represented. These are:
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Fig. 3: Figure 5: SEP Triplet Encoding for Anatomical
Proper Part (a-pp), Anatomically Disconnected (a-dc),
and Anatomical Partial Overlap (a-po′). (Source: after
[34])

impossibility to state that component of (CP), proper part of (PP) and contained in
(CT) are irreflexive and asymmetric, and it is missing a discreteness axiom for CP or CT
or a density axiom for PP (see [7] for details and discussion). Noteworthy is that they
include transitivity of the characterised parthood relations as standard in mereology,
but thereby do not have the option to state also that e.g. a directly contained in
relation is intransitive.

Other considerations Artale et al [1] [2] has placed the requirement for adequately
representing the part-whole relation in a wider context, where some outstanding issues
of 10 years ago are still in need of a solution. For instance, (non)distributivity of certain
roles10 [2]. A main issue revolved around the role composition operator and transitive
closure of ‘direct’ parthood roles at the TBox level [1], i.e., ∃W.∃W.C v ∃W.C), where
the computation does derive that if part x that is a direct part of y that in turn
is a direct part of the whole w, then x is a part of w but not that x is a direct
part of w. This, however, assumes one needs a relation defined a direct part of as
pursued by Sattler [32], which is neither necessary from an engineering perspective
nor desirable from an ontological (mereological) point of view. Alternatively, one can
use the role composition operator to denote transitivity R ◦R v R. Role composition
has been developed further up to role inclusion and concatenation in SROIQ [17].
However, note the two existential quantifications and that this is at the TBox level: the
former is quite distinct from the all-some definitions in the Relationship Ontology (cf.
§2.3) and the latter was already briefly mentioned in [2] section 3 with corresponding
unresolved issues regarding differences between TBox and ABox reasoning with the
parthood relation.

Another aspect of part-whole relations is the absence of ‘horizontal’ relations be-
tween the parts, already noted by Artale et al in 1996 [1], which is a problem for DL
10 Downward distributive: there are properties of the whole that the parts inherit; upward distributive:

the whole inherits properties form its parts. Alternatively, they are called property inheritance
through parts and property refinement through parts.
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representations, but less problematic for conceptual models for databases. DL adheres
to the open world assumption, thus if we have in a DL TBox a statement alike

C v ∃ has part.D u ∃ has part.E
then it may be that C has more parts than only D and E and the composite C may
not be fully defined. No DL language deals with an additional axiom that states that
C is composed of, the mereological sum of, D and E only. In contradistinction, con-
ceptual models do adhere to a closed world assumption, thereby making C uniquely
composed of at least one (instance of) D and at least one (instance of) E (depending
on the constructors in the language, see below). For both, however, one needs addi-
tional relations (roles) to declare how the parts themselves relate to each other. For
instance, let C be Book, D be BookCover, and E is Page, then an additional horizontal
role has to be declared alike BookCover u ∃ encloses.Page. This is not impossible,
but its consequences with respect to the parthood relation are not known. The status
of differentiating between e.g. essential and mandatory part (see §4.2) is unclear, idem
ditto the distributivity.

Last, Bittner and Donnelly [7] reach an interesting conclusion with respect to fea-
sibility of representing parthood in DLs, which merits further investigation: “ DLs
are best used as reasoning tools for specific tasks in specific domains... [but] are not
appropriate for formulating complex interrelations between relations. Thus we need
to understand a computational ontology as consisting of two complementary com-
ponents: (1) a DL based ontology that enables automatic reasoning and constrains
meaning as much as possible and (2) a first order ontology that serves as meta-data
and makes explicit properties of relations that cannot be expressed in computationally
efficient description logics. The first order theory then can be used by a human being
to decide whether or not the DL-ontology in question is applicable to her domain.
Moreover, meta-data can also be used to write special-purpose programs that phrase
knowledge bases and enforce the usage of relations in accordance to the meta-data.”
[7]. Given that reasoning over an ontology, knowledge base, or conceptual model is de-
sirable, transitivity is of greater importance than observing direct parthood, therefore
a restricted theory of parthood relations like provided by Bittner and Donnelly may
be more useful than direct parthood and SEP triples, although a thorough comparison
is yet to be conducted.

4.2 Aggregation in UML

UML specification UML [28] offers aggregation in two modes: composite and shared
aggregation. Composite aggregation, denoted with a filled diamond on the whole-side
of the association (see Fig.4), is defined as

a strong form of aggregation that requires a part instance be included in at
most one composite at a time. If a composite is deleted, all of its parts are
normally deleted with it. Note that a part can (where allowed) be removed
from a composite before the composite is deleted, and thus not be deleted as
part of the composite. Compositions define transitive asymmetric relationships
– their links form a directed, acyclic graph. [28]
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The composite object is responsible for the existence and storage of the parts [28],
where this ‘implementation behaviour’ of creation/destruction is an implicit ontolog-
ical commitment at the conceptual level : the parts are existentially dependent on the
whole (which implies mandatoryness), and not that when a whole is destroyed its parts
can exist independently and become part of another whole. On the other hand, the
whole is neither existentially dependent on its part nor has the part mandatorily. In
addition, only binary associations can be aggregations [28], which is peculiar from an
ontological perspective as this may (or may not) suggest that the aggregate/composite
can have only one type of part. For instance, we have a composite aggregation be-
tween Lysosome and the whole Cell, then the UML composite aggregation says not
only that lysosomes are existentially dependent on the cell they are part of and that
they can be part of one cell only, but also that the cell’s parts are lysosomes only,
which is biologically incorrect. More general and precise, let A be the whole with parts
B, C, and D in a UML class diagram as in Fig.4-A, then each part is associated to
the whole through a separate binary composite aggregation, as if A is a whole where
its instance a is made up of a collection of instances of type B, and/or made up of a
collection of instances of type C and/or D, making A a different type of entity for each
aggregation of its parts, which cannot be the intention of the representation because
that does not have a correspondence with the portion of the real world it is supposed
to represent. What needs to be represented, and supported in the language, is that
instances of B, C, and D together make up the instance of the whole entity A, as in
Fig.4-B, and prevent a modeller to create something like Fig.4-A. This difference is

 

A 

B C D 

A A B 

B C D 

{disjoint, complete} 

Fig. 4: A: Ontologically ambiguous UML composite aggregation as separate binary associations;
B: the composite A is composed of parts B, C, and D.

not mentioned in the UML specification, and one is left to assume it probably is a
“semantic variation point” which of the two readings should be used (like the precise
lifecycle semantics of aggregation is a semantic variation point too) [28]. Likewise for
shared aggregation, which is denoted with an open diamond on the whole-side of the
aggregation association, that has it that “precise semantics ... varies by application
area and modeler” [28], and presumably can be used for any of the part-whole rela-
tions described in Fig.2, or by [20] [25] [29] [48] etc. Unlike composite aggregation,
shared aggregation has no constraint on multiplicity with respect to the whole it is
part of. Thus, the part may be directly shared by more than one whole at the same
time. The latter can be interpreted in two distinct ways. Let W1 and W2 be disjoint
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classes on the aggregation side, and P the part class that is aggregated, then i) an
instance pi is part of instance w11 and possibly also part of instance w12 (or vv.) and
possibly more instances of W1, and/or ii) an instance pi is at least part of instance
w11 and possibly also part of instance w21 (or vv.). An example of the former is that
all instances of BSc curricula at the FUB must have as part a course in ethics, and
of the latter, that a particular seminar may be part of both the LCT Colloquia and
of the KBDB course. As exercise, try to come up with an example involving physical
objects, and how to represent the different semantics in UML.

Overall, the ambiguous specification and modelling freedom in UML does not
enable making implicit semantics explicit in the conceptual model, and rather fosters
creation of unintended models. This has been observed by several researchers, who
have proposed a range of extensions to UML class diagrams, which is discussed in the
next section.

Formalizations of aggregation in UML class diagrams UML does not have a
formal semantics, which demands from the researchers who propose extensions to also
give the formal semantics. Whereas Barbier et al [4] maps it into the, less than opti-
mal, Object Constraint Language, Motschnig-Pitrik and Kaasbøll [25] and Guizzardi
[12] present a First Order Logic formalization and corresponding ‘dressing up’ of the
graphical notation with several new icons and labels.

This is in stark contrast with the minimalist approach taken by Berardi et al [5],
who do not take into account these extensions and limit the formalisation to shared
aggregation only (no formalisation is provided to account for additional constraints
and composite aggregation). This avoidance is partially due to the ambiguous seman-
tics of aggregation in UML and because adequately representing parthood in DL is
not an easy task, as was discussed in §4.1. In Berardi et al’s [5] formalisation of shared
aggregation in UML class diagrams, we have (35), where G is a binary predicate (for
the aggregation, or ‘part of’) and C a concept.

∀x, y(G(x, y) → C1(x) ∧ C2(y) (35)

Here we present a few formal definitions regarding parthood relations, which are in
addition to the axiomatization in mereology and perceived to be necessary for con-
ceptual modelling of mereological and meronymic relations, and for which there is
also a correspondence in the UML extensions and corresponding graphical modelling
language. Guizzardi adds, among others, the notion of essential part EP , defined as
([12]: p165):

Definition 5.11 (essential part): An individual x is an essential part of another individ-
ual y iff, y is existentially dependent on x and x is, necessarily, a part of y: EP (x, y) =def

ed(y, x)∧�(x ≤ y). This is equivalent to stating that EP (x, y) =def �(ε(y) → ε(x))∧�(x ≤
y), which is, in turn, equivalent to EP (x, y) =def �(ε(y) → ε(x) ∧ (x ≤ y)). We adopt here
the mereological continuism defended by (Simons, 1987), which states that the part-whole
relation should only be considered to hold among existents, i.e., ∀x, y(x ≤ y) → ε(x) ∧ ε(y).
As a consequence, we can have this definition in its final simplification

(47). EP (x, y) =def �(ε(y) → (x ≤ y))
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where ε denotes existence, ≤ for a partial order, and the � necessity. The ‘weaker’
version is mandatory parthood MP , defined as ([12]: p167):

Definition 5.13 (mandatory part): An individual x is a mandatory part of another in-
dividual y iff, y is generically dependent of an universal U that x instantiates, and y has,
necessarily, as a part an instance of U :

(49). MP (U, y) =def �(ε(y) → (∃U, x)(x < y)).

To compare the mandatory part with the relation into the other direction, i.e. a
mandatory whole MW , we have ([12]: p170):

Definition 5.16 (mandatory whole): An individual y is a mandatory whole for another
individual x iff, x is generically dependent on a universal U that y instantiates, and x is,
necessarily, part of an individual instantiating U :

(52). MW (U, x) =def �(ε(x) → (∃U, y)(x < y))).

Last, we add an example of ‘dressing up’ UML class diagrams, which is depicted in
Fig.5, demonstrating the proposed representation for the sub quantity of relation with
an additional symbol, OCL constraint, and stereotypes. We can compare this with
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component-functional complex), actually reflects a distinction among 
different types of relata.  
 
Mass-Quantity: 
 
The quantity/mass relation holds between quantities (in the technical sense 
explained in section 5.5.1). Let us suppose a model such as the one 
depicted in figure 5.26, in which A, B and C are quantities.  We can show 
that for any A, B, C, the part-whole relation (C < A) holds as a result from 
the transitivity (C < B) and (B < A). The argumentation can be developed 
as follows: if A is a quantity then it is a maximal portion of matter unified 
by the characteristic relation of self-connectedness. That is, any part of A is 
connected to any other part of A. If B is part of A then B is connected to all 
parts of A. Likewise, if C is part of B then C is connected to all parts of B. 
Since connection is transitive, then we have that C is connected to all parts 
of A. Thus, since A is unified under self-connection, C must be part of A 
(otherwise the composition of A would not be a closure system, see 
definition 5.4). Therefore, we conclude that for the case of quantities, 
transitivity always holds.  

Another way to examine this situation is by inspecting A at an arbitrary 
time instant t. We can say that all parts of A are the quantities that are 
contained in a certain region of space R (i.e. a topoid, see Guizzardi & 
Herre & Wagner, 2002a). Since A is an objectified matter, than the topoid 
R occupied by A must be self-connected. Therefore, if B is part of A then B 
must occupy a sub-region R�, which is part of R. Likewise, if C is part of B, 
it occupies a region R��, part of R�. Since spatial part-whole relations are 
always transitive (Johansson, 2004), we have that R�� is part of R, and if C 
occupies R��, then it is contained in R. Ergo, by definition, C is a part of A.  

{essential=true}

«category»
Container

«quantity»
A

«quantity»
B

«quantity»
CQ Qcontainment

1 1 1 1 1 1
{essential=true}  

Parthood relationships between quantities are always non-shareable. For 
instance, in figure 5.23, B can only be part of one single quantity of A, since 
A is a maximal. Moreover, A has at maximum one quantity of B as part, 
since B is also a maximal portion. Finally, as discussed in section 5.5.1, 
every part B of A is essential.  
 As in figure 5.26, we decorate the standard UML symbol for 
composition with a Q to represent a quantity/mass parthood relation. If 
cardinality constraints are fully specified, then the Q-parthood is a relation 
which:  
 

Figure 5-26  Part-Whole 
relations among 
quantities 

Fig. 5: Part-whole relations among quantities. Essential parts are indicated with essential

= true, which implies a composite aggregation (filled diamond), which is of the type “Q” for
quantities. The stereotypes (“��”) add further constraints to the permitted types of classes.
(Source: [12])

other formalisations, approaches and emphases. For instance, Motschnig-Pitrik and
Kaasbøll focus on, among other things, gradations of exclusiveness between part and
whole. This corresponds partially to Guizzardi’s mandatoryness and (in)separability
of the part from the whole, as can be observed from one of the definitions, like for
total exclusiveness ([25]: p785):

Total exclusiveness. A part-of reference is totally exclusive if there exists exactly one
immediate part-of link from a part-type P to a whole-type W and, for each instance p of P ,
there exists at most one instance w of W such that p part-of w. More formally, let:

pk instance-of P, k ∈ [1..n],
wi instance-of W, i ∈ [1..n′], wi′ instance-of W, i′ ∈ [1..n],
wxj instance-of WX, j ∈ [1..n′′]

then
P totally-exclusive part-of W ⇔ ∀WX

((P part-of W ∧ P part-of WX) ⇒ (W = WX ∨W part-of WX)) ∧
((pk part-of wi ∧ pk part-of wi′)) ⇒ (i = i′))∧
((pk part-of wi ∧ pk part-of wxj) ⇒ (wi = wxj ∨ wi part-of wxj))
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Then one can add further gradations, such as arbitrary sharing, interclass exclusive-
ness, intraclass exclusiveness, and selective exclusiveness, each with their respective
label attached to the association, like SelExcl and so forth [25]. Barbier et al [4] for-
mulate the various add-ons as a “context” in OCL and add a meta-model fragment
for whole-part relations where the attribute aggregation is removed from the Associ-
ationEnd meta-class, Whole added as a subclass of Relationship and has two disjoint
subclasses Aggregation and Composite.

As the time of writing this document, none of the proposed extensions have made it
into the UML specification. Considering the amount of effort put in investigating and
proposing extensions to UML over the past 15 years, it will be useful to look into why
the treatment of part-of remains minimal and ambiguous in the UML specification.

4.3 Part-whole relations in (E)ER and ORM

It may be clear from the previous section that part-whole relations in UML class dia-
grams can have poorly defined semantics, but what about other conceptual modelling
languages? Entity-Relationship (ER) does not have a separate constructor for the
part-whole relations, despite the occasional [36] request. Neither does the Object-Role
Modelling (ORM) language have a separate constructor for parthood relation11. Are
they better off than UML? What, if any, can already be represented from part-whole
relations with ER or ORM? Here, we assess ORM.

Recollecting the UML specification that inserts design and implementation consid-
erations for composite aggregation (that the parts are existentially dependent on the
whole, and not that when the whole is destroyed the parts can have their own life),
more is going on. A shared aggregation, such as the member of relation, between Team
and Player in Fig.6, does not necessarily have the parts deleted as the players may
play in more than one team, but only have removed the particular team and the asso-
ciation between that destroyed team and its players. In contrast, a particular plasmid
exists in one cell only and is a part of that cell12, hence has to be modelled as a com-
posite aggregate. However, destroying the cell leaves the plasmid free to go to another
cell instead of being destroyed as well. Here there is a difference between UML and
ORM intended semantics: with composite aggregation in UML, part x cannot exist
without that whole y, but ORM semantics of the suggested mapping [16] says that ‘if
there is a relation between part x and whole y, then x must participate exactly once’.
Put differently, x may become part of some other whole y′ after y ceases to exist, as
long as there is some whole of type Y it is part of, but not necessarily the same whole.
Hence, in contrast with UML, in ORM there is no strict existential dependency of the
part on the whole. Fig.6-B shows an example, where the Club-Team fact has its first
order logic representation as (36-39) and Team-Person as (40-41). It does not specify

11 Other languages, such as RDF, XML, and the DL-based OWL, are in the very early stages (too).
See e.g. [26] [49] (and maybe [18]).

12 It is outside the scope to provide an analysis if this parthood relation is a structural parthood or
of a contained-in nature.



23

 
A. Aggregation in UML 

 
 

Club Team Person 1 * * *

B. Aggregation in ORM 

Club Team Personhas is in includes is in

Fig. 6: Graphical representation of “aggregation” in UML and ORM.
(Source: [15])

that it is impossible for x to exist independently. Thus, the plasmid-cell example can
be correctly represented with ORM but not UML.

∀x, y, z((isIn(x, y) ∧ isIn(x, z)) → y = z) (36)

∀x, y(isIn(x, y) → Team(x) ∧ Club(y)) (37)

∀x(Team(x) → ∃y(isIn(x, y))) (38)

∀x1, x2(isIn(x1, x2) ≡ has(x2, x1)) (39)

∀x, y(isIn(x, y) → Person(x) ∧ Team(y)) (40)

∀x1, x2(isIn(x1, x2) ≡ includes(x2, x1)) (41)

Compared to more and less comprehensive formalizations and extensions for aggre-
gation in UML [4] [12] [25] [5], for ORM, richer representations of the semantics are
possible already even without dressing up the ORM diagram with icons and labels (see
[22], who also provides several guidelines to ease selecting the appropriate part-whole
relation and its mandatory and uniqueness contraints).

Last, transitivity is also referred to as derived aggregation association [16], al-
though not specifically mentioned as such in the UML specification. Both UML and
ORM allow representation of derived (aggregation) associations/roles, which, consid-
ering the freedom in representing mereological relations, may be a method to add the
semantics of transitivity of the aggregation – assuming that when no derived aggre-
gation association occurs then the aggregation is intransitive. However, if we apply
ontological rigour to a model, i.e. domain knowledge is properly represented, the differ-
ent types of aggregation are appropriately kept separate and each relation is transitive
by default and usable for inferencing without the need to add ‘workarounds’ to the
model with derived aggregations.

Reflecting briefly on the treatment of part-whole relations in knowledge represen-
tation and conceptual modelling languages, there seems to be little left (or: transferred
from) mereology and multiple other issues have come to the surface, such as mandatory
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parts, essential parts, mandatory wholes, degrees of shareability, and ambiguous spec-
ifications. There are similar problems across the spectrum of languages, with multiple
alternative solutions as is customary in computer science and engineering. Identifying
the similar problems more generally might lead toward new developments in mereol-
ogy and thereby contribute to a coherent treatment of part-whole relations across the
spectrum. In the next paragraph we describe several requirements.

5 Arguments for representing and implementing part-whole
relations

It may be clear from the previous sections that part-whole relations in UML class
diagrams can have poorly defined semantics, DL struggles with its proper represen-
tation, ER and ORM do not treat it as a ‘first-class citizen’ either, mereology does
not address all part-whole aspects relevant for conceptual modelling, and the notion
of types of part-whole relations is not yet resolved fully. In this light, it is not surpris-
ing why the usefulness of including a separate constructor for the parthood relation
in conceptual modelling languages is called into question. In this section we look at
arguments why, and why not, it should be included. One might wonder why we did
not start with justifications, but after treating the philosophical, mathematical, and
conceptual modelling aspects, we can better compare the arguments put forward, i.e.
forming an informed standpoint as opposed to having an opinion based on intuition
or single-perspective focus.

5.1 Requirements

Considering the differences in definitions, implicit and explicit representations of the
part-whole relations in knowledge representation languages, an overall structure and
implementation would have to meet several requirements such that:
i. a ‘minimal amount’ of mereological part of relations can be unambiguously iden-

tified and are useful for conceptual modelling, including taking into account the
relata of the relation for types of part-whole relations;

ii. enable the modeler to distinguish between those types of parthood relations as
well as identify the non-mereological meronymic relations;

iii. provide a subset of combinations of uniqueness and mandatoryness constraints
applicable to the relation, such that they are ontologically correct/possible;

iv. clarify and accommodate for other, so-called secondary, properties of part-whole
relations, such as existential dependence, inseparability, functional dependence,
and completeness;

v. ensure the inverse, has-part, relation is properly modelled as well;
vi. transitivity of parthood relations is enabled where applicable and prohibited for

non-transitive parthood-like relations;
vii. address the possibilities and consequences of horizontal interrelations between the

parts of a whole;
viii. ensure the representation is such that one can distinguish between parthood

relations of a class (or its instances) and other generic properties (/relations/roles/
associations), i.e. to make part-whole and whole-part relations first-class citizens;
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ix. the constructors do not only serve as ‘paper exercise’ but also have computational
support;

x. that there is an underlying unifying paradigm that relates the conceptual modelling
language specific constructors (if possible).

At the time of writing, we are far away from meeting these requirements, and even
if this is realised, it is unclear if modellers and software analysts will use it. Point i
can be met with the simple taxonomic structure as presented in Fig.2, and point ii
with a decision procedure alike shown in figure 3 of [22]. Secondary properties, inverse
relations, transitivity, horizontal relations, and distinguishing between part-of rela-
tions and other properties is only to a very limited extent possible in some languages
(extensions of UML) and then either mostly implicit or with a myriad of additional
labels. Full computational support likely is not possible due to undecidability, which
hampers efforts achieving points ix and x; hence, requires a narrowing down to the
decidable fragment.

5.2 Discussion

DL, ER and ORM deal with part-whole relations simply by naming the relation or
fact type as part of and has part, or some similar label, and add appropriate unique-
ness and mandatory constraints. On the surface, this may seem an advantage as it
gives more freedom during the conceptual modelling exercise, e.g. to name a relation
contained in. However, if we omit the mereological part-whole construct, what we
are actually modelling is how sets of objects relate to each other, but not how parts
make up the whole (aggregation in UML, albeit poorly defined, does claim that the
parts make up the whole). Recollecting the relation between mereology and set theory
(§2.2), where mapping is possible under certain constraints, this does not do away
with the ontological, philosophical, issues. This is more fundamentally described by
Sowa [42] (among others), and particularly relevant if one indeed intends to model a
portion of reality. First,

• A mereological aggregate of multiple physical entities is a physical entity.
An aggregate of abstract entities is also abstract. But in the usual versions
of mereology, an aggregate of a physical entity like the cat Yoyo with an
abstract entity like the number 7 would be meaningless or undefined.

• In set theory, however, the axioms impose no constraints on the types of the
members. A cat and a number could be both members of the set {Y ojo, 7}
because it is a new entity, whose type does not depend on Yojo or 7. A
reasonable interpretation is that sets are abstractions, independent of the
nature of their members, which may be physical, abstract, or mixed.
[42] (italics added)

One can argue that no conceptual modeller will define nonsensical sets such as {Y ojo, 7}
anyway and that the language should be as minimal as possible instead of expressive
(or restrictive) for the sake of making it foolproof. But there is an important differ-
ence between, say, being a set of molecules that make up a whole body versus that
molecules are parts of your body. First, elements of a set have no additional structure
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among the elements (even though your molecules are in a particular configuration),
but parts of a whole do have this and that can be represented. Second, if the elements
of a set change, then so does the extension of the whole, even though the identity of
a whole may remain. For instance, you get sunburned, which changes healthy DNA
into DamagedDNA; the new set with instances of DamagedDNA molecules creates a
new type of ‘set-based whole’ by virtue of its representation, but it is not the case
that a change in representation results in a different person. In addition, identifying
an additional part of a person does not imply a change of the whole. Third, set-based
mereology requires an Urelement [6] [21], but mereology does not. In several domains,
most notably the biological domain, this can lead to some undesirable ontological
consequences (see [21] for examples). Fourth, elaborating on Sowa, if the extension
of a set with parts is properly grounded, it represents physical objects, and therefore
so should the mereological whole; this is implied with mereology, but not guaranteed
with aggregating sets. Thus, granting parthood relations a status of first-class citizen
allows one to represent reality more accurately.

A counter-argument concerns ease of representation versus accuracy of represen-
tation with respect to reality. Some awkward constructs like the SEP triples do not
represent reality accurately and has its own system to transform parthood relations
into taxonomic subsumption, but it is a useful workaround to get the software sys-
tem to deal with parthood relations. Also, the Semantic Web language for ontologies
OWL is in fact stored as an XML serialization, but people do not have cried foul
that XML does not even deal properly with relations in general, let alone parthood
relations. Likewise, ontologies containing partonomies like the Foundational Model of
Anatomy [31] are stored in set-theory-based relational databases. Ontological correct-
ness, usable computational support for, and usability of the parthood relation are not
by definition always conflicting goals on all points, but there is a trade-off. For in-
stance, the additional expressivity upon enabling proper representation of part-whole
relations comes at a cost of greater difficulty during the modelling stage, although this
can be ameliorated by providing guidance through Q&A sessions, decision diagrams,
and drop-down boxes to facilitate selecting the appropriate relation and constraints.
Likewise, mereological theories can be mapped only with limitations onto set theory.

More importantly, proper inclusion of the part-whole (and whole-part) relation
can allow correct reasoning over a conceptual model – for what remains within the
decidable fragment. This may be of no interest during development of a small con-
ceptual model, but deriving implied relations, derived relations (transitivity), and
satisfiability can aid correcting large conceptual models and thereby diminishing de-
bugging time and resources during the software testing stage. Generally, advantages to
include different parthood relations are a.o. automated model verification, transitivity
(derived relations), semi-automated abstraction operations, and enforcing good mod-
elling practices. On the other hand, specifying everything into the finest detail may
be too restrictive, results in cluttered diagrams, is confusing to model, and costs ad-
ditional resources to include in CASE tools. Incrementally adding further constraints
like essential part, the whole-part relation, and inter-part relations, enable the concep-
tual modeller to gradually develop models that are closer to the real-world semantics
and thereby improve quality of the software. When used more widely, it can be use-
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ful to add extensions to the knowledge representation languages, e.g. as a separately
loadable modules in CASE tools for those modellers who need it, analogous to the
Description Logics approach with a family of more and less expressive knowledge rep-
resentation languages. A relative ‘shortcut’ toward implementation is to consider the
pervasive DLs that not only provide the basis for the Web Ontology Language OWL,
but a variant (DLR [8]) serves as underlying unifying language for conceptual mod-
elling languages UML, ER, and ORM and already enjoys some software support (in
iCOM [10]), hence might serve as a unifying paradigm – provided sufficient support
of the part-whole relation will be sorted out.

In short, addressing and representing part-whole relations have several advantages,
including achieving a better understanding of reality, representing it more accurately,
and therefore develop better ontologies and conceptual models that in turn improve
software quality (and then you have happier users & customers). If the effort that
still has to be put in to meet the set of requirements is worthwhile the investment of
resources, that will only be known when it is tried and tested.

6 Concluding remarks

We looked at part-whole relations from several perspectives: philosophical consider-
ations, mathematical properties, variations on types of part-whole relations, and its
(non-) treatment in several knowledge representation and conceptual data modelling
languages. Each sub-topic covered only scratched the surface of the characteristics of
the part-whole relations within their respective fields of research. Coherently linking
up these approaches remains a distant goal, although some links are being established.

To give an indication of open problems, we outline several topics, although this
list is not exhaustive.
? Philosophy: What are the precise differences between parthood relations between

classes and parthood relations between instances? How can the issues around
the relata of the parthood relation be resolved? What about the inverse relation
has part and inter-part relations? How do mereology and granularity relate? Con-
cerning extensions as discussed and proposed for UML, what are the consequences
of so-called secondary properties for mereology?

? Mathematical open issues: a full characterization of models of GEM, uncovering
which properties distinguish models of GEM that are not models of GEM+ from
models of GEM+, and the model-theoretic analysis of the various topological and
other extensions of GEM [30].

? DL: Which subtheory of mereology fits best with any of the extant DLs? Or can one
of the DL languages be extended, and if so, how and what about its complexity?
How does it compare with SEP triples in domain modelling? What about prop-
erty inheritance across the parthood relation, and about essential, mandatory, and
shared parts? What are the difference between the intensional and extensional rea-
soning (behaviour of the parthood relation at the TBox and ABox, respectively)?
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? ER and ORM: what and how to add it? What about developing more expressive
versions of ER and ORM that include the parthood relation, alike the different
DL languages? How to make it usable for the modeler?

? UML: Which extensions have been proposed, where do they differ and where does
the same aspect have alternative but equivalent representations? What are the
exact differences with mereology proper and the engineering requirements, and
why? How can it be transferred to the application stage and to make is usable for
the modeler?

? RDF and XML: Little has been investigated. It is my guesstimate that proper
treatment of the parthood relation in XML does not seem likely as it is not ex-
pressive regarding relations in general, let alone deal with a range of properties of
a relation. I would like to see my guesstimate to be proven incorrect.

? Applied parthood relations: what lessons can be learned from using part-whole
relations in specific subject domains such as bio-ontologies and geographical infor-
mation systems? If any, can this be fed back into mereology to extend mereological
theories? Does usage of the part-whole relation across subject domains reveal do-
main specific intricacies that cannot be generalised to domain-independent char-
acteristics?

? How can the ‘chain’ from philosophy to mathematics to conceptual modelling be
linked up in a consistent and coherent manner?

? Can an ontologically correct taxonomy of types of part-whole relations be con-
structed such that it complies with at least one of the foundational ontologies?
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