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Abstract

Ontology representation languages for the Semantic
Web have their strengths and weaknesses, in particular
in the light of deploying them in information systems.
We survey and compare the Description Logics-based
OWL variants, and the DL-Lite and DLR families
of languages. We demonstrate distinguishing features
with examples from the biological and biomedical do-
mains. Language choices that an ontology developer
has to make are, among others, expressivity versus on-
tology usage for data-intensive tasks and having mereo-
logical parthood versus n-ary relations (where n > 2).
Guidelines are suggested to facilitate choosing the lan-
guage best fitted for a task.

Introduction
Since the release of the W3C standard of the Semantic
Web ontology language OWL in 2004, many bio(medical)
ontologies are developed in OWL either de novo or have
translations from their native language to OWL. An aim
is to work toward ontology compatibility to enhance in-
formation integration in biomedical domain and to repre-
sent formally our understanding of biological and biomedi-
cal reality. However, early-adopters from the bio(medical)
domain start reporting their first issues with OWL (Ban-
dini & Mosca 2006; Kazic 2006; Marshall et al. 2006;
Ruttenberg, Rees, & Zucker 2006; Smith et al. 2006;
Wolstencroft, Stevens, & Haarslev 2007). Their problems
concern
I. (perceived) limitations of ontology representation lan-

guages for representing biomedical knowledge ade-
quately and contain requirements or proposals for im-
provements of OWL for biomedicine, and

II. bottlenecks concerning linking data to the ontologies and
subsequent performance issues of the software system
when performing common reasoning tasks, such as clas-
sification and querying.

Applications of biomedical ontologies in the Semantic Web
are sparse, but are expected to gain momentum once on-
tologies can be linked efficiently to biological data and used
with, e.g., electronic health record management for both an-
notation and mining hospital information systems, querying
whole genomes through an ontology, or even trying to man-
age the vast amount of metagenomics data (e.g., (Seshadri et

al. 2007)) through several domain ontologies.
Are Semantic Web technologies and ontology languages

anywhere near meeting such goals set by domain experts in
biology and biomedicine? A familiar requirement is greater
expressivity of the ontology language to enable represent-
ing the complexities of biology as comprehensive as possi-
ble, which corresponds to type I problems mentioned above.
This is being addressed gradually, most notably with the
recently proposed OWL 1.11. From the computer science
perspective, meeting type II requirements, such as data ac-
cess through an ontology and ontology-based knowledge-
or data integration, however, are somewhat ‘behind’ com-
pared to expectations of science researchers. One tried
and tested solution is the Instance Store (Bechhofer, Hor-
rocks, & Turi 2005; Wolstencroft, Stevens, & Haarslev
2007) that links an expressive OWL ontology to a relational
database, but is not scalable to large amounts of data or
large ontologies – precisely because of the expressive on-
tology language used and the optimization algorithms re-
quired for automated reasoners, such as Pellet, FaCT, and
RACER, to deal with expressive ontology languages. A
recently proposed alternative are the so-called ‘lite’ fam-
ily of ontology languages (Calvanese et al. 2006a; 2006b;
2005), which are less expressive but are better scalable –that
is, like one is accustomed to from relational databases – and
therefore will be more suitable for use with bio-ontologies
in large information systems and across the Semantic Web.

To clarify the differences between these new and extant
ontology languages and their performance with intended
usages, and, more importantly, the unavoidable trade-offs,
we compare 9 Description Logics-based ontology languages
and provide an overview of the important distinguishing fea-
tures and limitations in Section 2. Although one can model
freely with as aim to represent a scientific theory as com-
prehensive and ontologically correct as possible, we focus
on the core requirement to actually use ontologies computa-
tionally for a range of purposes. Given the identified trade-
offs due to expressivity of an ontology language, compu-
tational limitations, and (under-)used language features, we
suggest guidelines to choose the best suitable formal lan-
guage for the task at hand (Section 3). Such details for

1http://owl1 1.cs.manchester.ac.uk/owl specification.html (Ed-
itor’s draft of 27-11-2006).



choosing languages ought to be hidden from the developer,
who then could use a user-friendly graphical, diagrammatic,
or natural language interface for ontology and software de-
velopment and usage in an application layer; however, this
solution will take more time to realise (although research-
grade tools such as iCOM, GrOWL, SWOOP, and Protégé
do move in this direction). Therefore, developers have to
make informed decisions about the language optimal for the
intended purposes of the ontology. With this contribution,
we aim to facilitate this process. Conclusions and ongoing
research are described in Section 4.

Features and limitations of knowledge
representation languages

Knowledge representation languages have their origins in
logic and a resulting knowledge base system combines the
‘model’ (logical theory) with data. This is distinct from on-
tologies and conceptual models for database development in
the sense of both what should be represented – to capture
a piece of reality versus modelling for a certain application
– and how it is to be used – ‘online’ usage with compu-
tational support versus ‘offline’ static representation. Such
distinctions are becoming blurred when users require ‘on-
tology languages with conceptual modelling qualities’, such
as support for data types, and online access to conceptual
models for dynamic database connectivity, like for peer-to-
peer semantic networks. However, a formal representation
language can be indifferent about the developers’ intentions.
Put differently, knowledge representation languages like De-
scription Logics (DL) can be, and are being, used as a unify-
ing paradigm for ontology development and formal concep-
tual modelling (Baader et al. 2003). Therefore, we assess
features and limitations of DLs regarding both biomedical
ontologies and conceptual models for biological and medical
data in the first two subsections, respectively. Afterward, we
take inclusion and usage of parthood relations as combined
requirement motivated from these subject domains and as-
sess implementation feasibility.

Ontology languages for the Semantic Web
In this subsection, we discuss features and limitations of
the expressive OWL languages and alternative DL-based
ontology languages of the DL-Lite family that are more
suitable for usage with large amount of data.

OWL features. Within the scope of the Semantic Web for
health care and life sciences, biomedical ontologies, ontol-
ogy representation languages, and formalisms for biomedi-
cal data, the focus is on use of the W3C standard Web On-
tology Language OWL. “the OWL language” comes in three
flavours: OWL-full is built on top of RDF, OWL-DL is based
on the Description Logics (DL) language SHOIN with ad-
ditional support for data types, and OWL-Lite is based on the
DL language SHIF , which is a subset of OWL-DL. OWL-
Lite lacks e.g. union and complement of concepts, like that
one cannot state that “Apples are not Oranges” (Apple v
¬Orange), and has cardinalities restricted to ≥ 1, ≤ 1, 1
or 0, preventing one to represent, say, that “Benzene con-

sists of 6 Carbon atoms”. The latter, among other new fea-
tures, is properly addressed with the next-generation OWL,
the draft version OWL 1.1. OWL 1.1 is based on the DL lan-
guage SROIQ (Horrocks, Kutz, & Sattler 2006), also has
additional support for data types, and extends the function-
ality of OWL-DL with, a.o., several role properties, such as
reflexivity and concatenation, and qualified number restric-
tions that permits one to specify multiplicity/cardinality also
with a qualified role (i.e., the range is defined); more pre-
cisely, statements of the types C v ≥ n R.D and C v ≤ n
R.D where n can be any finite integer ≥ 0; hence, now one
can include

Benzene v ≥ 6 consists of.Carbon atom u
≤ 6 consists of.Carbon atom.

On the other hand, OWL 1.1 is not compatible with RDF,
hence, neither with OWL-full. The main differences be-
tween the DL-based OWL languages are described by
(Cuenca Grau et al. 2006) and summarised in Table 1.

Although it may be tempting to choose the language with
the greatest expressivity, it comes at a cost: performance of
your implementation. Given that bio(medical) ontologies
can become quite large and ontology-mediated biological
data sets are already large, computational usability of
biomedical ontologies turns into an important requirement.
We return to this issue in Section 3.

DL-Lite features. DL-Lite is a family of DL languages
whose expressive power is specifically tailored to provide
good performance reasoning algorithms in the presence of
large amounts data stored in the ABox (‘individuals in the
ontology’) or linked relational databases (Calvanese et al.
2006a; 2005; 2006b). Focusing on ontology-based data ac-
cess and ontology-based database integration, DL-Lite al-
lows for delegation of data handling to relational databases
through database-ontology mappings and algorithms that
translate queries posed in terms of a DL-Lite ontology to
suitable queries over the linked database(s).

Modelling features available in the DL-Lite family – be-
yond the usual features like DL-concept hierarchies, dis-
jointness between DL-concepts (or roles), and role domain
and range specification – are DL-concept and role (relation)
value-domains and, implicitly, n-ary relations where n > 2;
see Table 1 for details. In particular, specifying role values
is a novel addition in DL-LiteA, not available in any other
DL language. One can attach an attribute for concrete values
of datatypes (e.g, strings, integers, and dates), to a relation
as well as to a DL-concept (Calvanese et al. 2005), thereby
allowing the modeller to correctly represent, e.g., the rela-
tion between Patient, Hospital and the values for the date of
admission, or the region of a gene location on the chromo-
some without having to resort to complicating intermediate
reification steps. n-ary relations can be supported through
an extension (Calvanese et al. 2005) alike in DLR, which
does have support for n-ary relations fully integrated in the
language. This will be addressed in the next section.

DL languages for formal conceptual modelling
We take a brief look at formal conceptual modelling with
DLs, because of the option for common usage of DLs for



Language ⇒ OWL DL-Lite DLR
Feature ⇓ Lite DL v1.1 F R A ifd µ reg
Role hierarchy (taxonomy of relations) + + + - + + + + +
N-ary roles (where n ≥ 2, ternary, quaternary relation etc.) - - - ± ± ± + + +
Role concatenation (limited role composition) - - + - - - - - +
Role acyclicity (least fixpoint construct) - - - - - - - + -
Symmetry + + + - + + - - -
Role values (role attribute values, like strings and integers) - - - - - + - - -
Qualified number restrictions (where the cardinal-
ity/multiplicity n may also be ≥ 2)

- - + - - - + + +

One-of, enumerated classes (constraining the instances of a
class to a pre-defined set of objects)

- + + - - - - - -

Functional dependency (UML method, derived-and-stored
relation)

+ + + + - + + - +

Covering constraint over concepts (total/complete covering
of the subtypes)

- + + - - - + + +

Complement of concepts (disjointness of classes) - + + + + + + + +
Complement of roles (disjointness of roles) - - + + + + + + +
Concept identification (primary key with > attribute) - - - - - - + - -
Range typing (define concept of the 2nd participant in role) - + + - + + + + +
Reflexivity ∗ - - + - - - - + +
Antisymmetry ∗ - - - - - - - - -
Transitivity ∗ ‡ + + + - - - - + +
Asymmetry ‡ + + + - + + - ± -
Irreflexivity ‡ - - + - - - - + -

Table 1: Differences between Description Logics-based ontology and conceptual modelling languages; terms in braces are
regularly considered as synonyms (for indicative purpose only); indirect or implied support (±); properties of the parthood (∗)
and proper parthood (‡) relation.

both ontology and conceptual modelling development, the
prospect of ontology-driven information systems, database
and tool integration through the use of ontologies, and
smoothening translation from an ontology to conceptual
models and their corresponding databases. The DL DLR
and its extensions were specifically developed to provide
a mapping from conceptual modelling languages such as
UML, EER, and ORM2 to a DL (Artale & Franconi 1998;
Berardi, Calvanese, & De Giacomo 2005; Calvanese, De Gi-
acomo, & Lenzerini 1999; 1998; Keet 2007) and has a
mapping to the DIG interface for DL reasoners, such as
RACER and Pellet, to enable automated reasoning over
conceptual models. This combination is available in the
iCOM tool2, which automatically checks satisfiability of
the model (if all DL-concepts can be instantiated), com-
putes derived relations, classifies DL-concepts, and can rea-
son across relations between different conceptual models.
Distinct features of DLRs compared to the aforementioned
ontology languages are that they all fully support objecti-
fication, qualified number restrictions, and n-ary relations
where n ≥ 2. Returning to (Kazic 2006) and (Smith et
al. 2006) mentioned in the introduction, they noted the
OWL shortcoming that it cannot deal with “even simple in-
teractions among pluralities of continuants” (Smith et al.
2006). Thus, with DLR you can represent this. We demon-

2http://www.inf.unibz.it/∼franconi/icom.

strate two different examples: A) (Kazic 2006) wants to
let thymidine phosphorylase bind with thymidine or phos-
phate, which are two binary relations with role exclusion,
and B) a ternary relation in some biomedical conceptual
model for recording epidemiological data on the path of
infection of particular HIV subtypes from Donor to Re-
cipient. With the recently mapped ORM2-to-DLRifd by
(Keet 2007) (ORM2 to OWL-DL is in development), one
could avail of the ORM2 diagrammatic representation and,
for the more linguistically-oriented Semantic Web users
like (Kazic 2006), have it automatically verbalized in near-
natural language sentences, which is depicted in Figure 1,
which was made in NORMA3. The corresponding transla-
tions into DLRifd , where the second example involves an
automated reification step, is normally hidden from the de-
veloper so that a user can focus on the n-ary relation as a
whole instead of its cumbersome formalization. For illus-
trative purpose, the ternary relation R is represented ‘behind
the scenes’ in DLRifd as follows:
R v ∃[1]r1u (≤ 1[1]r1)u∀[1](r1 ⇒ (2 : HIV subtype))u

∃[1]r2 u (≤ 1[1]r2) u ∀[1](r2 ⇒ (2 : Donor))u
∃[1]r3 u (≤ 1[1]r3) u ∀[1](r3 ⇒ (2 : Recipient))

and the role exclusion as
[bindsT ]R1 v ¬[bindsP ]R2.
DLRs also support primary key identification and func-

3http://sourceforge.net/projects/orm/.



 

 

 

ThymidinePhosphorylase binds Thymidine. 
Each Thymidine bound to at most one ThymidinePhosphorylase. 
It is possible that the same ThymidinePhosphorylase binds  

more than one Thymidine. 
ThymidinePhosphorylase binds Phosphate. 
Each Phosphate bound to at most one ThymidinePhosphorylase. 
It is possible that the same ThymidinePhosphorylase binds  

more than one Phosphate. 
For each ThymidinePhosphorylase, at most one of the  

following holds: 
that ThymidinePhosphorylase binds some Thymidine;  
that ThymidinePhosphorylase binds some Phosphate. 

 

 
 
 
 
 
 
HIVsubtype transmitted from Donor to Recipient. 
For each Recipient, 
some HIVsubtype transmitted from some Donor to that Recipient. 
It is possible that more than one HIVsubtype transmitted from  

the same Donor to the same Recipient 
and that the same HIVsubtype transmitted from more than one  

Donor to the same Recipient 
and that the same HIVsubtype transmitted from the same  

Donor to more than one Recipient. 
Each HIVsubtype, Donor, Recipient combination occurs at most once  

in the population of HIVsubtype transmitted from Donor to Recipient. 

 

B.

A.

Figure 1: Diagrammatical and textual representation in
ORM2 of two examples that have interactions among more
than two continuants. A: role exclusion; B: ternary relation.

tional roles for UML methods (in DLRifd ), role acyclicity
and transitivity, and role concatenation (DLRµ, DLRreg),
and temporal DL (DLRUS ); see Table 1 for details.

An example: representing and using parthood in
biology and biomedicine
Part-whole relations are important for representing bio-
logical and biomedical knowledge and deriving informa-
tion of biological or biomedical interest. For instance,
it is of biological interest to know if a type of zinc-
endopeptidase, Tetanospasmin, is always part of all bacte-
ria of type Clostridium tetani, and if this is the case, then
all humans that are infected with (contain) bacteria of type
C. tetani will also contain – have as part – Tetanospasmin
(hence, suffer from the disease tetanus). Even the relatively
early efforts in biomedical ontology development ensured
inclusion of this relation in one way or another. For instance
OpenGALEN has 20 relations categorised as types of part-
whole relations4, it was on a par with the subsumption re-

4http://www.opengalen.org/tutorials/crm/tutorial9.html

lation in the Gene Ontology (Gene Ontology Consortium
2004), and the Foundational Model of Anatomy (Rosse &
Mejino Jr 2003) has a partonomy firmly integrated in the
ontology. More recently, several part-whole relations have
been included in the OBO Relation Ontology (RO) (Smith
et al. 2005), which is used by the Cell Cycle Ontology (An-
tezana et al. 2006). The Cancer Bioinformatics Infrastruc-
ture Objects Model (caBIO), on the other hand, struggles
with UML’s aggregation relation, collections, and DL roles5,
and the Protein Ontology permits, but does not specify se-
mantics of, a parthood relation6. From the medical informat-
ics modelling perspective, attempts to solve usage of part-
hood relations in DL are pursued by (Schulz & Hahn 2004;
Schulz, Hahn, & Romacker 2000). These variations in rep-
resentation of parthood relations are, at present, mostly in-
compatible with each other. So, what do we have and what
do we need?

First, lets take two ingredients, being the basics on part-
hood from mereology, Ground Mereology (see e.g. (Varzi
2004) for an overview), and requirements motivated by the
biomedical ontologies, the parthood relation of the RO. In
Ground Mereology, part of is reflexive, antisymmetric, and
transitive, and proper parthood is asymmetric, irreflexive
and transitive. The RO has part of twice, once for relat-
ing endurants (continuants, like mary’s heart part of mary’s
body at time t) and another part of for perdurants (occur-
rents, processes, like red hepatization#1 part of inflamma-
tion#1), and proper part of . For the sake of illustration,
we assume for the moment that these ingredients comprise
the requirements. The parthood properties were checked
against the ontology languages and the results included in
Table 1. Thus, currently, no DL-formalised ontology repre-
sents parthood as ought to be according to Ontology (mere-
ology), but it is within sight with the draft OWL 1.1 and
DLRµ. Furthermore, and looking at implementations, a pe-
culiarity of DLs is that if the relations are typed differently
(distinct domain & range restrictions), such as either part-
hood for endurants or relating a part-process to its whole-
process, then the relations must have different labels to dis-
tinguish the two relations. Thus, one part of for both types,
as described in the RO article (Smith et al. 2005) and RO
and Cell Cycle online OWL files in the respective ‘com-
ment’ fields, does not suffice, because a reasoner does not
reason over textual comments. However, sticking another
label to RO’s process-based part of in the OWL version
can be solved easily.

Biologists’ requirements are gradually being met and
OWL 1.1 and DLRµ already provide opportunities for
biomedical ontology developers to incorporate proper part-
hood relations more comprehensively and consistently
throughout the extant ontologies than at present, thereby
providing an opening toward achieving better ontology in-
teroperability and data integration.

5caCORE v3.2 Technical Guide, 22-12-2006,
ftp://ftp1.nci.nih.gov/pub/cacore/caCORE3.2 Tech Guide.pdf

6http://proteinontology.info/documentation.htm



Guidelines for choosing the most suitable
formal language

The main question is, of course: what do you want to do
with the formal ontology or conceptual model? We discuss
some common scenarios in this section, and relate them to
several extant bio(medical)-ontologies. First, we have to ad-
dress computational limitations and under-used features of
ontology languages, where the latter provides several oppor-
tunities to put up with the former in order to achieve accept-
able performance levels when reasoning with very large on-
tologies and ontologies linked to large data sets. The second
part of this section is devoted to the guidelines.

Computational limitations and under-used features
The first step in answering the question is to determine
what is more important: getting all details correctly repre-
sented, i.e., to represent scientific theories as comprehen-
sive as possible, or automated reasoning support (including
query answering) over the ontology or conceptual model.
The reason for this either-or choice is the direct propor-
tional relation that exists between the computational com-
plexity of reasoning over an ontology and the expressive
power of the language used to formalize the ontology. The
computational complexity of a problem indicates the rate
at which the resources (i.e., computation time and mem-
ory) required to solve the problem grow with respect to
the size of the problem’s input. For instance, the computa-
tional complexity of reasoning in OWL 1.1 is NExpTIME-
complete (Cuenca Grau et al. 2006) and in the DLR fam-
ily is in ExpTIME (Calvanese, De Giacomo, & Lenzerini
1998), whereas the DL-Lite family remains within polyno-
mial time (Calvanese et al. 2006a). Practically, this means
that software systems using OWL 1.1 and DLR-formalized
ontologies and conceptual models will grow exponentially
slower with every increase in the size of the ontology or
the amount of data populating the ontology, whereas sys-
tems using DL-Lite will grow only polynomially, as with
relational database systems. Hence, the latter can deal with
much larger inputs. For instance, ontologies that are popu-
lated by more than a few hundred thousand individuals cur-
rently may require hours or days when modelled with and
queried through expressive languages instead of the desired
seconds or minutes, as observed by, e.g., (Marshall et al.
2006) with their HistOn ontology about transcription factor
binding sites. Classification of protein phosphatases (Wols-
tencroft, Stevens, & Haarslev 2007) using the ontology was
not scalable either. In some cases, the expressivity of a lan-
guage might render the reasoning problems computationally
undecidable (e.g., OWL-Full (McGuinness & van Harme-
len 2004)), which means that it is impossible to implement
systems which provide automated reasoning support for the
full language. These inherent limitations cannot be circum-
vented by experienced software programmers. This might
seem a big problem for adoption of Semantic Web technolo-
gies by biology and biomedicine, but is not necessarily so.

Biological and biomedical reality is exceedingly more
challenging to represent in an ontology or conceptual model
than, say, the enterprise domain, and identifying necessary

and sufficient conditions (see “Asserted conditions” in
Protégé) for DL’s ‘defined concepts’ rarely occurs; e.g., the
MGED ontology7 for microarray experiments, mammalian
phenotype8, BioPax level29 for biological pathways, and
HistOn have only primitive concepts. Put differently, devel-
oping a taxonomy tree-only is already quite an achievement,
and the full expressive power of OWL is not used. Yet,
if one has a ‘simple’ taxonomy or ontology but still uses
a reasoner for expressive ontology languages, it is like
trying to kill a mosquito with a sledgehammer: it uses a
range of algorithms for descriptions that could be in the
ontology, but are not included in the domain ontology. With
an ontology that uses a less expressive ontology language,
one should be able to take advantage of more efficient
reasoning algorithms for the fewer tasks to compute and
gain in performance.We illustrate this briefly for several
bio-ontologies.

Example. In the same way that OWL 1.1, OWL-DL and
OWL-Lite are characterized by a DL, the expressivity used
in an ontology build in OWL (or OBO10 given the OBO-
to-OWL mapping11) is characterized by a DL which can be
identified by analysing the language constructs used in it.
We present such an analysis for the previously mentioned
ontologies and some other well known bio-ontologies in Ta-
ble 2 (sample date: 12-2-2007). The table is sorted (ap-
proximately) from the most to the least expressive ontolo-
gies with respect to the DLs that characterize them (The De-
scription Logics Handbook (Baader et al. 2003) has a com-
plete overview of the expressivity of the DLs presented in
the table, including further explanations on the different let-
ters; summaries of the letters can be found in, for instance,
the ‘metrics’ option in Protégé and the online complexity
navigator12.). The results were obtained by loading the on-
tologies into Protégé and SWOOP and using their DL ex-
pressivity metric facilities to identify the DL that character-
ized the ontologies. These automated analyses, however, do
not take into account important structural information of the
ontologies which can further characterize the expressivity
used in the ontologies. Put differently, in some cases the ex-
pressivity could be made lower by removing or remodelling
some redundant or ‘odd’ assertions (from a logician’s point
of view).

7http://mged.sourceforge.net/ontologies/MGEDontology.php
8http://www.informatics.jax.org/searches/MP form.shtml
9http://www.biopax.org/

10http://obo.sourceforge.net/main.html
11http://www.bioontology.org/wiki/index.php/OboInOwl:

Main Page
12http://www.cs.man.ac.uk/ ezolin/logic/complexity.html
13http://obo.sourceforge.net/cgi-bin/detail.cgi?nmr
14http://obo.sourceforge.net/cgi-bin/detail.cgi?human-dev-anat-

abstract
15http://www.meteck.org/supplDILS.html
16http://obo.sourceforge.net/cgi-bin/detail.cgi?psi-mi
17http://obo.sourceforge.net/cgi-

bin/detail.cgi?mammalian phenotype
18http://diseaseontology.sourceforge.net/



Ontology Characterizing DL
ProPreO SHOIN (D)
BioPAX ALCHON (D)
Cell Cycle Ontology SIN (D)
HistOn ALCHIF(D)
NMR Ontology13 SHF
MGED Ontology ALEOF(D)
Human Developmental Anatomy Ontology14 ALEOF(D)
Microbial Loop15 ALCHI
Cell Type Ontology ALE(D)
Gene Ontology ALE(D)
Protein-Protein Interaction Ontology16 ALE(D)
Mammalian Phenotype Ontology17 AL(D)
Disease Ontology18 AL
FungalWeb19 FL0

Table 2: DL characterization of the expressivity of several bio-ontologies sorted in (approximate) decreasing order with respect
to the complexity of the language.

Given the languages and analysis of the examined ontolo-
gies, we can see that the current Gene Ontology taxonomies,
Protein-Protein Interaction ontology20, and HistOn, among
others, remain within DL-LiteA expressivity. The BioPax
and MGED ontologies can be adapted easily to match
DL-LiteA by changing representation of oneOf in
the ontology (the one-off construct is not supported in
DL-LiteA). In these ontologies, the one-off construct
is used to record versioning information through having
versioning as instances (strings of text) and subsequently
nominalized into a class. This means that versioning is part
of the ontology about microarray experiments, whereas it
is not necessary to, say, classify versions of an ontology
or compute satisfiability. Versioning information certainly
needs to be recorded for an ontology, but not in an ontology;
that is, it is information about the ontology, but should
not be a component in the ontology-as-logical-theory over
which one performs the automated reasoning. By moving
this information to comment fields, also Biopax and MGED
can take advantage of improved performance in all software
implementations compared to their OWL-DL representa-
tion. On the other hand, the developers of the Foundational
Model of Anatomy and Cell Cycle Ontology want to be
as comprehensive as possible, and therefore are served
better by OWL 1.1. Subsequently, one can extract a ‘light’
version of such comprehensive ontologies into DL-Lite
to aid implementation of, e.g., database integration in the
biomedical domain. ♦

Having illustrated usage of ontology languages and having
provided an example of adjusting an ontology to a language
of much lower complexity that will improve performance,
we now can proceed to the guidelines.

19http://www.cs.concordia.ca/FungalWeb/
20http://psidev.sourceforge.net/mi/xml/doc/user/index.html

Ontology language choices
Based on the preceding analysis of language features, com-
putational limitations, and (under-)usage of language fea-
tures, we propose several guidelines to choose the (rel-
atively) optimal ontology language for the core intended
tasks.
I. Comprehensiveness

a. No computation. The user can choose freely the lan-
guage that covers to the best extent the expressive re-
quirements of the ontology. Suitable languages are the
OWL 1.1 and DLR families, or to resort to other log-
ics that are currently largely outside of the scope of
the Semantic Web, such as first- or higher order logics,
temporal logics, epistemic logic etc.. For instance, to
represent a scientific theory as comprehensive as possi-
ble and for foundational ontologies, such as BFO21 and
GFO (Herre & Heller 2006).

b. Some computation desired and plenty of time and
memory is available. A decidable language has to be
used that should have the lowest computational com-
plexity as possible while covering the requirements for
expressiveness. The size of the ontology or the data
will be limited by the resources at hand, that is: either
a large ontology of universals or a small one that can
be linked to a small amount of data. Languages suit-
able for this setting are OWL-DL, OWL 1.1, the DLR
family. For instance, constructing integrated concep-
tual models that are used ‘off-line’ for eventual data in-
tegration and developing reference ontologies, such as
the FMA, for particular subject domains.

II. Computation
a. Computing time and memory are an important com-

ponent. This is a grey area as to what constitutes a
reasonable amount of waiting time, and either OWL-
DL, OWL-Lite or DL-Lite could be used: the for-
mer two if there is relatively little data (with as rule-of-
thumb, certainly less than hundred thousand instances)

21http://www.ifomis.uni-saarland.de/bfo/home.php



and if the ontology is small (less than a few hundred
DL-concepts); DL-Lite can be used in all scenarios.
For instance, classification of defined DL-concepts and
instance classification, such as with aforementioned
protein phosphatases, and online support for (semi-
)automated database integration using conceptual mod-
els or an ontology.

b. Computing time and memory are critical. The user has
less expressive power at disposal, limiting the accuracy
of the ontology compared to item I, but its size and the
amount of data linked to the ontology can be as for re-
lational databases. Languages suitable for this setting
are those in the DL-Lite family. For instance, to pose
complex queries over the data, like microarray data and
data about large genomes, through ontologies such as
the GO, MGED ontology, and HistOn.

With these main four distinctions, one could construct a de-
cision procedure, as in “if you want an ontology to do x,
then...”. However, the four distinctions remain and can be
reused for any new scenario, whereas a decision tree would
have to be updated upon each usage variation.

One can argue that ontologies ought to be purpose-
independent to obtain maximum reuse for both representing
scientific theories and a wide range of Semantic Web ap-
plications. However, one cannot have it both ways at the
same time. A nearby solution is to let the computer program
automatically ‘simplify’ an ontology when users demand
performance over expressivity. First steps in this direction
have been taken already: mapping DL-LiteA to OWL 1.1
(by one of the authors, MR), and an early prototype of the
QuOnto tool (Acciarri et al. 2005) is available online22,
which is the first system that can answer complex queries
(union of conjunctive queries) expressed over ontologies
whilst capable of managing millions of instances. Further,
there is an implemented transformation from DLR to the
DIG API in the iCOM tool23 (Franconi & Ng 2000), so that
current automated reasoners, such as Pellet and RACER, can
be used to reason over formal conceptual models that are
the abstract representations of the physical databases. These
are research-grade tools, however, that focus on verifying
that the theory is implementable and much less on user-
friendliness and usability for domain experts. They could be
useful for bio-ontologists and bioinformaticians researchers
to examine the latest theoretical results for addressing the
bio-sciences Semantic Web requirements of linking data to
the ontologies and using this combination efficiently.

Conclusions
Based on, and motivated by, a comparative assessment of
ontology- and formal conceptual modelling languages, cur-
rent bio-ontologies and their usage, and prospective scenar-
ios for ontology-based and ontology-mediated tasks, we pro-
vided suggestions for choosing the optimal ontology lan-
guage for the task. Although it is expected that ontology
languages develop further, the main trade-off between ex-
pressivity and usability in data-intensive biomedical infor-

22http://www.dis.uniroma1.it/∼quonto.
23http://www.inf.unibz.it/ franconi/icom/.

mation systems remains. Regarding the currently supported
modelling features in the considered languages, this results
in having to choose between, e.g., proper representation of
parthood relations versus n-ary relations and qualified num-
ber restrictions versus role values.

Current research comprises mapping DL-Lite to OWL
1.1 and incorporating a DIG API for the QuOnto system,
which will enable easy adoption of the DL-Lite languages
by current OWL/Protégé users. We plan to conduct a
more comprehensive analysis of the (under-)used ontology
language capabilities, develop algorithms for ‘lite’-izing
expressive ontologies to use for ontology-based data access
and integration, and reasoning services for bio-ontologies to
better match the ‘offers-and-demands’.
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