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ABSTRACT
In the early phases of Cyber-Physical Systems (CPS) development,
scoping human behavior plays a significant role, especially when
interactions extend beyond expected behavior. Here, it is especially
challenging to develop cases that capture the full spectrum of hu-
man behavior. Up to now, identifying such behavior of humans
remains a task for domain experts. We explore how one can use
Large Languages Models (LLMs) in the design phase of systems
to provide additional information about human-CPS interaction.
Our approach proposes a preliminary ontology describing a hierar-
chy of types of behavior and relevant CPS components as input for
prompt templates. It uses them to generate parts of human behavior
descriptions, as well as a canned prompt with one variable about
behavior. For demonstration, we take a smart building with a Home
Energy System as the use case.

An initial user evaluation shows that the behavior descriptions
generated with standard and ontology-driven prompts complement
each other and are useful when assisting humans. The discovered
uncommon behaviors can be used to complete interaction scenarios
that eventually result in a more robust CPS implementation.

CCS CONCEPTS
• Software and its engineering → Designing software; Re-
quirements analysis; • Information systems→ Language mod-
els; • Computer systems organization→ Embedded and cyber-
physical systems.

KEYWORDS
Human Behavior, Large Language Models, Cyber-Physical Systems,
User Scenario, Digital Twin
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1 INTRODUCTION
The applications of Cyber-Physical Systems (CPS) span many do-
mains, such as healthcare [42], transportation [37], buildings [20],
and maritime [10]. These systems interact with the physical world
through sensors, make environmental changes with actuators, and
adapt themselves to evolving environmental conditions. In many
of these systems, humans are part of the environment, thereby
interacting with the CPS. CPSs face unpredictable behaviors due to
many uncertain environmental conditions, including how humans
interact with them. Not all possible behaviors (including normal
and exceptional) are known during the CPS development due to lim-
ited knowledge about the CPS operating environment. Therefore,
there is a great need to identify such behaviors so that the imple-
mentation of CPSs can be improved to deal with them, avoiding
possible unsafe situations.

This uncommon behavior identification is relevant also for test-
ing a CPS.Within the context of this paper, especially the challenges
to identifying unpredictable corner cases and coping with environ-
mental complexity [2] are of particular interest. Such unexpected
corner cases could be often a cause of failures. However, developers
are unable to predict all possible conditions and interaction scenar-
ios in complex environments. Large Language Models (LLMs) and
AI assistants show promising support for speeding up development
(acceleration mode) or for exploring possible options (exploration
mode) [5]. The latter is of particular interest: since LLMs can pro-
vide the information they have learned from online sources, one
may assume that they know a lot about human behavior. In partic-
ular, sources of information about uncommon human behavior are
abundant on the Internet (e.g., in newspapers).

Within this paper, we aim to answer the research question of
whether LLMs are effective in proposing human behavior for CPS in-
teraction scenarios. We propose a systematic approach for exploring
human-CPS interaction called SEED (Scenario Elicitation Enhanced
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by Large Language moDels). This includes a human behavior ontol-
ogy describing human-CPS interaction components and different
types of human behavior, such as uncommon, unexpected, contra-
dictory, law-breaking, and desired behavior. We use this ontology
to tailor prompt templates for LLMs and receive possible human-
CPS interaction suggestions. In a preliminary experiment, we have
evaluated the usefulness of the suggestions and if they were outside-
the-box ideas. The results showed high usefulness and around half
of the evaluated outputs as outside-the-box. These suggestions can
thus be used to create different detailed scenarios for a use case,
taking into account more variants of human behavior.

The paper is structured as follows: section 2 provides relevant
background about CPS, modeling human behavior, scenarios and
LLMs in requirements engineering. Section 3 describes our vision
of how to use LLMs to discover unknown human behavior. Sec-
tion 4 provides details about the approach and section 5 shows the
realization of it using a smart home energy management system as
use case. Section 7 discusses our approach and section 8 presents
related work. The last section concludes our study.

2 BACKGROUND
We present the background needed to understand our approach:
ontologies, scenarios in requirements engineering and LLMs.

Ontologies. An ontology is, informally, an engineering artefact
in computer-processable format, which contains the entity types,
their relationships, and properties or constraints that hold over
them of a particular subject domain (for a longer, more precise
definition, see [18]). A practical key difference with conceptual data
models is that an ontology is expected to be usable across multiple
applications, rather than be tailored to one specific application only.
While ontologies were initially envisioned to facilitate data integra-
tion, meanwhile they have found use in other computational tasks,
such as information retrieval, question-answering systems, Multi-
ple Choice Question generation and user modelling for classifying
students, and knowledge discovery [24] and, most recently, they
are also used with LLMs (see related work section 8).

Scenarios in Requirements Engineering. Requirements engineer-
ing is a key challenge for software engineering [6], as well as CPS
engineering [16]. Requirements are not only used to build software
systems but also to test them, for instance, as advocated by the
popular V-model [35]. User scenarios, which are stories of how
users and systems interact to achieve a goal [3], are a common
mechanism to capture requirements [15]. They are typically speci-
fied by domain experts in the form of natural language text [27],
and collected via traditional data collection methods, such as inter-
views and focus group discussions [28]. This is a slow and costly
approach, and therefore there has been considerable effort in opti-
mizing requirements elicitation using crowd-sourced data, such as
online resources, and relying on automated techniques, such as nat-
ural language processing and machine learning [28]. Requirements
in natural language text are often followed up with a substantial
manual effort to design and test systems. At the same time, research
aims at developing automated techniques for deriving more for-
mal models following a model-driven engineering (MDE) approach
(refer to, e.g., [25] for a systematic review).

LLMs. In language processing, traditional language models have
been essential for text generation and understanding, employing
the simple idea of estimating the likelihood of sequences of tokens
based on a training dataset, and predicting the next token given
some text (e.g., plain English [45]). Advances in computational
power, machine learning, and access to large datasets have led to
the rise of LLMs [39]. These models, trained on vast and diverse
data, excel at simulating human language. The transformer architec-
ture, introduced by Vaswani et al. in 2017 [48], is the foundation of
modern LLMs. The self-attention mechanism and encoder/decoder
layers lead to high effectiveness in natural language processing
(NLP) tasks that handle long-range dependencies well and paral-
lelize training. By learning from massive corpora and generating
realistic text, LLMs are narrowing the gap between human and
machine-produced language, not only for NLP but for software
engineering [19] and beyond.

3 BIG PICTURE
Traditionally, the development of CPS systems involves a rigorous
requirements specification phase, which includes the elicitation of
interaction scenarios that describe how the system is expected to
react when interacting with its environment, including humans.
As it is difficult for developers to come up with a broad variety
of situations, our approach supports them by proposing different
types of human behavior such as uncommon, unexpected, contradic-
tory, law-breaking, and desired behavior. Following a model-driven
engineering philosophy, these requirements are then refined to
prescriptive models that specify how the system should be realized
in terms of algorithms and implementation technology.

At a high level, our proposed approach is simple (see Figure 1).
We suggest using LLMs in conjunction with a human behavior
ontology to 1) assist the CPS Developer in creating comprehensive
human-CPS interaction scenarios that take into account all forms of
unexpected and exceptional human behavior, and 2) help the CPS
Developer in transforming the augmented interaction scenarios into
prescriptive models and tests for the CPS implementation, as well
as descriptive models of the human that the CPS can use at runtime.
Our proposed extensions to the current state-of-practice for CPS
development are highlighted in blue in Figure 1. The ontology con-
tributes to both structuring types of behavior and typical elements
of a CPS and therewith contributes to systematically collecting sce-
narios comprehensively. The LLM is expected to contribute to the
ideation phase and offer creative CPS interaction scenarios that are
expected to at least assist humans in devising such scenarios. In this
paper, we focus on the LLM and ontology-augmented elicitation of
interaction scenarios (bold blue arrows).

Prescriptive Models for CPS. Because CPS are sometimes safety-
critical systems, they must follow a rigorous software development
process that typically involves certification. MDE plays a critical
role in this process: models bridge the gap between requirements
and implementation, introducing additional steps and layers of
abstraction between the specification and the solution. At each
step, the models can be shown to exhibit certain desired properties.

Typically, system interaction scenarios initially take the form
of structured text, such as user stories or use cases [21]. In the



A Human Behavior Exploration Approach
Using LLMs for Cyber-Physical Systems MODELS Companion ’24, September 22–27, 2024, Linz, Austria

CPS
Developer

CPS Requirements

Interaction
Scenarios

CPS Implementation

LLM

Tests for the CPS

Prescriptive CPS 
Realization Models

Descriptive Models 
of the Human (DT)

Human
Behavior
Ontology

…

…

Figure 1: Overview of the LLM-mediated approach, with op-
tional use of an ontology.

context of CPS development, variants of use cases have been pro-
posed that impose additional structure and rigor on how those texts
are written. For example, approaches such as Restricted Use Case
Models (RUCM and U-RUCM [53]), Concern-Oriented Use Cases [26]
or UCM4IOT [8] require the developer to specify the scenarios us-
ing flows, where each flow is a numbered sequence of interaction
steps. An interaction step is described by one sentence adhering
to a simple structure that clearly identifies the interaction kind,
direction, and involved actors. This additional rigor makes it pos-
sible to then transform those textual scenarios into more formal
models, which can then serve as formal specifications that can be
analysed and used to derive prescriptive models for the CPS imple-
mentation. For example, rigorous use case specifications have been
transformed to system operation specifications with formal pre- and
post-conditions expressed in OCL [44], probabilistic state machines
to assess dependability [56], as well as UML state machines [51].

Descriptive Models of the Human. For describing human behavior
and human-system interaction, typical approaches are behavior
modeling methods. These models mainly come from requirements
engineering processes intending to understand human behavior
and human-system interaction. Typical requirements engineering
approaches capture such information, e.g., in scenario descriptions
within Personas [23], UML activity diagrams, interaction diagrams,
BPMN [40] models or domain-specific languages [36]. When it
comes to exceptions or exceptional behavior, languages such as
BPMN already include concepts to describe this. Other modeling
approaches, e.g., rely on adding OCL constraints and checking
them [46]. With our envisioned approach, we can add alternative
behavior to such models making them more comprehensive as they
consider interactions beyond expected behavior. These behavior
models could then either be interpreted by a software system, e.g.,
to provide human behavior assistance [38], or used to further help
specify how a system should be tested [30].

Test Generation. One use of human behaviors discovered with
LLMs is to support the testing of CPSs. Such testing can be per-
formed in two possible ways. First, the discovered human behaviors
can be used as test case specifications for manual testing, i.e., a hu-
man reads the test specification and manually performs test actions

on the CPS, such as turning on and off switches or tampering with
the device. In addition, the discovered human behaviors can be used
to support automated testing, which may require translating gen-
erated textual specifications into different notations (e.g., restricted
natural language models) followed by generating executable test
cases. Alternatively, a possibility also exists to translate textual spec-
ifications directly into executable test cases, e.g., using LLMs, which
requires further investigation. In the case of automated testing, test
execution would require testing in simulation.

4 PROPOSED APPROACH
We zoom in on three key components of the first steps of the big
picture introduced in the previous section: the human behavior
types, the LLM prompting procedure, and prompt templates.

4.1 Human Behavior Types for CPSs
As reviewed in the related work (Section 8), only some notions
and terms may be of use for a behavior ontology in the context of
human interaction with a CPS. As a first step toward an ontology,
we identify broad categories, which may be refined at a later stage,
if deemed promising. This list was devised by the authors (with
input also from Shaukat Ali), based on their knowledge in the field
of human-computer interaction and of CPSs and on consultation of
CPS documentation. Behavior in this context refers to a sequence
of actions and interactions by an actor with the CPS in a certain
context.
• Expected behavior concerns behavior (and the correspond-
ing execution of typical actions in concordance with that
behavior) that are common and conform to what the CPS is
designed for and deemed regular, safe, use of the CPS. For
instance, one is expected to cycle with an e-bike.
• Uncommon and exceptional behavior are those behaviors that
are statistically in the ‘long tail’, but that the CPS designers
have taken into account as valid ‘corner cases’ and where
the CPS will operate within its safety standards.
• Unexpected behavior are those behaviors that are statistically
in the ‘long tail’ (and possibly reported on in news articles
more often, possibly skewing an LLM trained on it), but
which were not foreseen by its designers. The CPS may
still operate according to specifications when processing the
unexpected behavior.
• Contradictory behavior includes a set of behaviors with their
related actions where the human indicates one thing but
does another. It may or may not be the case that the human
should be doing it, nor that the CPS was designed for it. For
instance, a user may use the left indicator on a scooter but
drive straight or turn right instead of turning left.
• Desired/intended behavior is that behavior that the CPS was
designed to instill in the user. This is likely also expected
and law-abiding, and typically involves ‘nudging’ of the user
towards the desired behavior.
• Law-abiding behavior as a type is orthogonal to the afore-
mentioned types of behavior, as it may be either expected or
desired.
• Law-breaking behavior is likewise orthogonal, but may apply
more likely to uncommon, unexpected, or contradictory,
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Figure 2: Sketch of the CPS-Human Interaction Behavior Ontology (CHIBO) with the behavior components and attendant
entities in the context of CPSs. White boxes: specific to CHIBO; colored boxes: top-level ontology entities for interoperability.

behavior, although the expected category cannot be ruled
out, e.g., riding through a red light on an empty road at night.

The notion of change in human behavior, can be understood
in two ways for CPSs: ‘nudging’ is effectively taking place or the
human’s behavior is changing because of non-CPS induced reasons
(e.g., from relaxed driving to exhibiting road rage). They are beyond
the current scope of the paper.

These considerations resulted in a preliminary (i.e., for
experimentation) ontology about human behavior when they
interact with CPSs, called CPS-Human Interaction Behavior
Ontology (CHIBO), which is sketched informally in Figure 2,
rendered diagrammatically for communication and formalized
in OWL as the authoritative reference (see fn. 1). CHIBO aims
to include the main elements in an overarching structure, where
most classes have subclasses tailored to the type of CPS, such as
User with as subclasses End user or Technician, and all Actions
can be represented in a taxonomy of types of actions and as
sequences as being constitutive of a certain type of behavior.
Also, while the disjointness between expected versus unexpected
behavior is theoretically clear, practically it may be contentious
to classify and the constraint may need to be relaxed. Finally, it
is aligned to the DOLCE foundational ontology [34], indicated in
yellow, and Realizable from BFO [4] that DOLCE does not have.
They are included only to improve model quality and precision,
interoperability, and potential for reuse.

The ontology can be either extended or a module added for a
specific type of CPS, such as the types of sensors and input compo-
nents, types of users, types of interactions, or one can convert it
into a database format where such elements are stored as values.
If proven useful, one also may consider adding other ontologies

for a specific CPS or generic related models, such as the SASO
lightweight application ontology for sensors [22].

4.2 Prompting Procedure

cps← createCPSDescription()∗;
humanActors← populateHumanActors()∗;
mainScenarios← populateMainScenarios(humanActors)∗;
configuredOntology← configureOntology();
for ms : mainScenarios do

for hb : HumanBehaviorTypes do
alternateList← queryLLMForExtraBehavior

(𝑚𝑠,ℎ𝑏, 𝑐𝑝𝑠 , 𝑐𝑜𝑛𝑓 𝑖𝑔𝑢𝑟𝑒𝑑𝑂𝑛𝑡𝑜𝑙𝑜𝑔𝑦);
for alt : alternateList do

detailedAltScenario = queryLLMForDetails
(𝑎𝑙𝑡,𝑚𝑠, ℎ𝑏, 𝑐𝑝𝑠);

ms = integrateAltScenario
(𝑑𝑒𝑡𝑎𝑖𝑙𝑒𝑑𝐴𝑙𝑡𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜,𝑚𝑠);

end
end

end
Algorithm 1: Human Behavior Exploration.

The pseudo-code in Algorithm 1 describes the proposed prompt-
ing procedure. To start, we need a general description of the CPS,
a list of human actors, and the main success interaction scenarios,
i.e., a numbered list of steps that explain how the human actors
would normally interact with the CPS to achieve their goals. We
also need to instantiate the ontology for the CPS under study, e.g.,
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specific behavior opportunities. Even for those this initialization,
the assistance of an LLM could be used.

Our approach then goes through all the main scenarios, and
generates a prompt using the prompt templates (either just based
on the human behavior types, or the instantiated ontology). It is
this step of the algorithm (i.e., queryLLMForExtraBehavior) that the
rest of this paper focusses on. For each newly discovered, relevant
behavior, our approach then elicits how the CPS should behave in
such a situation by eliciting the details of an alternate scenario.

4.3 Prompt Templates
Consider now the model as shown in Figure 2. For a simple prompt-
ing strategy (subsequently referred to as SEED-s), we have a tem-
plate that only contains one placeholder dedicated to capturing
the behavior type. This template is: “Given this use case and its
main scenario, what is [X] behavior of the user?’. The placeholder
[X] is replaced by any of the subtypes of CPS-human interaction
behavior.

A more advanced prompting strategy is facilitated by the CHIBO
ontology (subsequently named SEED-o). Informed by vocabulary
fromCHIBO, there aremany possible prompts that can be generated
by combining the different types. In this paper, we created the
following templates:

T1. “Given this use case and its main scenario, what is [X] behavior
of user [Y]?” where [X] is replaced with either of the subtypes
of CPS-human interaction behavior and [Y] with user or one
of its subtypes;

T2. “Given this use case and its main scenario, what is [X] behavior
of user [Y] considering behavioral opportunity [Z]?”

T3. “Given this use case and its main scenario, what is [X] behavior
of user [Y] when taking into account stimulus [Z]?”

T4. “Given this use case and its main scenario, what is [X] behavior
of user [Y] when stimulus output component [Z] malfunc-
tions?”

T5. “Given this use case and its main scenario, what is [X] behavior
of user [Y] when action [Z] is obstructed?”

5 RUNNING EXAMPLE: SMART BUILDING
The use case we apply our approach to is taken from the smart
building domain. The term smart building refers to both techni-
cal processes and systems for the automation and networking of
buildings, as well as appropriately equipped buildings. Based on
their building topologies, e.g., smart homes, residential buildings,
office buildings, data centres and hotels, different scenarios are rel-
evant for human users when interacting with the building and its
IT systems. In this paper, we focus on use cases for Smart Homes,
informed by documentation of the EU project FINSENY [14].

A Smart Home has a Home Energy Management System. It
manages all devices that have a direct or indirect impact on the
energy input and output of the smart home. Such devices with
impact are (a) all appliances/apparatuses that consume, generate,
or store energy, (b) the components of the home, such as walls and
windows that regulate the exchange of energy between the inside
and the outside, as well as (c) subsets of the home, such as floors or
rooms that make sense as separate units for managing energy.

The Smart Home is integrated into an energy distribution net-
work through a 2-way interface that allows information and power
to flow in both directions, from the grid to the home (downstream
control information & power consumed from the grid by the home)
and from the home to the grid (upstream status data & locally stored
or generated power fed by the building to the grid). The grid does
not have to be aware of the details of the individual appliances and
pieces of equipment handled at the home level, as only aggregate
information is being exchanged through the interface.

To solve peak loads on the grid, each Energy Provider may con-
tract with a number of its Customers who live in Smart Homes to
agree to have some of their appliances interrupted a few hours per
year, with the condition that the Customer can derogate at any time.
In exchange, the Customer is rewarded financially for participating.

Ontology Instantiation and Exemplary Prompts. Considering the
experimental nature of the pipeline, we opted for manual use of the
ontology first, rather than automating prompt generation with the
OWL file extended with entities relevant to the use case. To this end,
we created a spreadsheet with the key classes to be instantiated
(or subclasses) as column headings to which all authors could add
items taking as the starting point the use case description. This
resulted in 27 entities specific to the smart home energy use case,
such as Customer and Energy Manager as types of User, Mobile
Phone (for SMS) as a type of Stimulus Output Component, and
Load Reduction Notification as Device-mediated Stimulus. This
spreadsheet can be accessed from our GitHub repository [1].

Let us present here some prompts generated by our SEED-o
approach after instantiating the ontology for the second template
(Sect. 4.3): “Given this use case and its main scenario, what is un-
expected behavior of the user considering they have a financial
behavior opportunity?” or, even more specific, assuming a suitable
taxonomy for each main class: “Given this use case and its main
scenario, what is unexpected behavior of the energy manager con-
sidering they have a financial incentive to minimize discounts?”.
For the fourth template, a specific instance may be “Given this use
case and its main scenario, what is law-breaking behavior of the
home dweller when the derogation button malfunctions?”.

6 EMPIRICAL EVALUATION
In this section we present the empirical evaluation that we have
carried out to evaluate our approach. The goal is to answer the
following research question:

RQ.Can LLMs effectively assist engineers to identify exceptional
human behavior during the requirement elicitation process?

6.1 Experiment Design and Setup
The experiment consisted of an off-site and asynchronous evalu-
ation procedure where the participants had to fill a spreadsheet
providing their opinions on the performance of the LLM-generated
outputs for the the smart building example.

This spreadsheet contained 82 potential exceptional behaviors
generated by the LLM. For each potential exceptional behavior, the
participants needed to give their opinion on whether: 1) the sug-
gested exceptional behavior was useful or not, and 2) whether they
thought it was outside-the-box or not (meaning something they
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would not have thought of themselves). They also were requested
to identify repeated suggested behaviors.

The way in which the spreadsheet was created is as follows.
We created prompts for our two prompting strategies: the simple
strategy and one that uses the CHIBO ontology, as described in
Section 4.3. For the simple strategy, we created 4 prompts (prompts
type a). For the SEED-o strategy, we have created prompts using the
instantiation of the ontology (Section 5) which led to 21 prompts
(prompts type b). We have prompted GPT-4o with all these 25
prompts and, for each prompt of type a, we made the LLM generate
between 10-12 potential exceptional behaviors; and 4-5 potential
exceptional behaviors for the prompts of type b. In all cases, we
provided a system prompt that contained a description of the smart
building and a main success scenario. The ontology, all the prompts,
and responses we have used in this experiment are available in our
GitHub repository1.

For instance, for the prompt “Given this use case and its main sce-
nario, what is law-breaking behavior of the customer considering
she wants to maximize electricity use?”, GPT-4o provides, among
others, the following potential exceptional behavior “Tampering
with the Home Energy Management System: Illegally altering or
hacking the Home Energy Management System to disable load
reduction commands or to falsify energy usage data. This could
involve: - Hacking into the system to prevent it from turning off
high-energy appliances. - Reprogramming the system to falsely
report lower energy usage during the load reduction period.”.

To have a balanced list of exceptional behaviors between the two
strategies, we took 10 behaviors for each prompt type a (40 sugges-
tions) and 2 behaviors for each prompt type b (42 suggestions). We
put them together in the spreadsheet and shuffled them.

The preparation of the experiment was done by one author. The
other four authors, having no knowledge of how the spreadsheet
was generated (e.g., the strategy that generated every potential
exceptional behavior) beyond the example and the main scenario,
participated by each filling the spreadsheet independently.

Filling the spreadsheets took each author around 2 hours, mainly
due to the time-consuming detection of duplicate behaviors. Once
filled in, the four spreadsheets were handed in to the author who
prepared the experiment in order to analyze the results.

6.2 Evaluation Metrics
To analyze the effectiveness of the LLM, we defined the following
metrics:
M1 Usefulness: Proportion of useful behaviors identified by each

strategy,
M2 Outside-the-box: Proportion of outside-the-box behaviors

identified by each strategy,
M3 Duplicates: The proportion of duplicated behaviors per strat-

egy,
M4 Overlap: The overlap between the behaviors suggested by

the two strategies.

6.3 Results
Figure 3 shows the results of M1 and M2 for each participant and
each strategy. As we can observe, all the participant seem to agree
1https://github.com/atenearesearchgroup/human-behavior-exploration

Figure 3: Results for M1 (usefulness) and M2 (outside-the-
box) of the evaluated output, calculated as a fraction of 1
from the Y(1)/N(0) answers.

that the suggestions are useful (M1). The average opinion of all four
participants on the usefulness of the simple approach is 0.88 with
a standard deviation of 0.13, while the average usefulness of the
CHIBO approach is 0.79 ± 0.17. The participants also considered
that there is a good number of suggestions that are outside-the-box.
The average outside-the-box suggestions for the simple approach
is 0.54 ± 0.13, while for the CHIBO strategy, it is 0.39 ± 0.10.

Figure 4 presents the results for M3 and M4. We can observe
that the participants considered that our approach provides some
duplicated behaviors for SEED-s (on average 0.18 ± 0.09) and even
a higher number for CHIBO (0.38 ± 0.09). Regarding the overlap
between the exceptional behaviors suggested by both strategies,
we can observe there is a certain overlap. According to the par-
ticipants, 0.36 ± 0.16 elements proposed by the simple approach
are also suggested by the SEED-s strategy, and 0.49 ± 0.18 of the
behaviors proposed by the SEED-o strategy are suggested by the
simple strategy, too. However, these numbers are far from 1, hence
we can conclude that both strategies seem to complement each
other.

An example of complementarity is SEED-s’s output “**Multiple
Users in the Home**: Other members of the household might not be
aware of the load reduction agreement and could operate appliances
in ways that contradict the intended load reduction, resulting in
unexpected energy usage.” that did not appear in SEED-o’s output
and, vice versa, “**Communication Failures**: This can result in
the Provider failing to update the customer’s records, which might
affect the calculations for financial rewards or penalties.” in SEED-o
but that did not appear in SEED-s.

7 DISCUSSION
The results showed that both the basic and ontology-mediated
prompting resulted in useful and outside-the-box outputs, in
essence exploiting a strength of LLMs, being that of creativity and
ingested corner cases reported on the Web. Based on a preliminary
exploration of ontology-mediated prompting resulting in more
creative suggestions than the basic one, the expectation was that
it would also hold in the experiment, but it did not. This noted
absence of difference may be due to having selected only the first
two responses from the list of ontology-mediated responses for the
evaluation; see supplementary material for complete outputs (see
fn. 1). For instance, “Given this use case and its main scenario, what

https://github.com/atenearesearchgroup/human-behavior-exploration
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Figure 4: Results for M3 (duplicates) and M4 (overlap) in the
outputs evaluated.

is unexpected behavior of the customer when the derogation is
obstructed?” takes into account communication failures and users
that the SEED-s does not, such as “The Home Energy Management
System might successfully receive the opt-out or cancellation
request, but it fails to inform the Distributor and subsequently the
Provider.”. This scenario was listed third and therefore not included
in the user evaluation, and likewise other themes further down in
the responses, such as fake documents, technical assistance, and
the use of HVAC equipment did not appear in the SEED-s output.

The differences across the four participants may be due to the
participants’ respective background, both regarding familiarity with
smart home electricity meters and society. For instance, tampering,
bypassing, and illegal tapping are common in the country where
one of the participants lives, as are the many notifications about in-
voluntary load-shedding (rolling blackouts), and so the assessment
of useful or outside-the-box may be affected accordingly. Likewise,
assumptions and familiarity with a home energy system can af-
fect the judgments, as well as the terminology (e.g., whether the
‘home energy system’ refers to the software only or also all hard-
ware components including the meter and cabling). This brings
afore a potential new avenue of future work for scenario specifica-
tion, requirements engineering, and test specification: the notion of
multiple stakeholders judging the relevance of the draft scenarios
before finalizing the requirements and test specifications.

Regarding the SEED configuration and especially the positioning
of the ontology and the LLM, other options are conceivable, most
notably embedding the ontology in the LLM (pre-training stage
of the LLM) or including it in an enhanced prompting stage with
already known outputs (fine-tuning of the LLM) that are not readily
available in our case. Both options require considerable upfront
investment from stakeholders in both resources and knowledge
and skills to carry out, which are prohibitive for uptake of the
approach. The stakeholders’ strengths are in CPS and requirements
engineering, rather, but even if that is addressed, it does not resolve
the issue of limited scenarios to train an LLM on. In contrast, our
method offers a flexible approach with comparatively low upfront
investment that leverages an existing strength of LLMs and, as has
been shown, already offers useful output.

Finally, although the running example and focus in this paper
is CPS, the general approach of LLM-mediated ‘uncommon’ case
exploration may be generalisable to requirements elicitation in

general, not just for a CPS, and be used to complete interaction
scenarios that will result in more robust implementations.

8 RELATEDWORK
We focus related work in the pertinent aspects of LLMs, both re-
tarding ontology-enhance LLM use and their use in requirements
engineering. Afterward, we will briefly discuss the rationale why
a new model about CPS-Human Interaction behavior had to be
developed to tailor the prompts.

Ontology-enhanced LLM use. The use of ontologies with LLMs is
not novel, especially in the context of knowledge graph and ontol-
ogy learning and RAG. Some titles also suggest use of ontologies
to enhance prompting, such as [29, 41, 50, 55], but they use it in
different tasks than aimed at here (model-driven prompting as a
systematic approach to explore a theme), such as few-shot learning
to patch up perceived knowledge gaps [50], towards information
retrieval for a dialog system [41], for stance detection task [55],
and as background knowledge for event detection through causal
reasoning [29].

LLMs in Requirements Engineering. LLMs have enjoyed increas-
ing popularity in software engineering research, covering many
different areas of software engineering ranging from requirements
to testing and maintenance [13, 19]. LLMs for requirements engi-
neering, while amounting to a relatively smaller portion of existing
work — 3.9% of the surveyed studies by Hou et al. [19] and also
remarked by Fan et al. [13], address topics including anaphoric ambi-
guity treatment, requirements classification, requirements analysis
and evaluation, and specification generation [19]. Related work typ-
ically takes existing requirements as a starting point and performs
various analyses or transformations on top of them using LLMs.
Examples include requirement retrieval on requirement analysis
tasks [52], automatic requirement classification [31], requirement
simulation and disambiguation [49] and specification generation/-
formalization from input Java code [32] or natural language text
intent [12], and generating use cases [54] or domain models [9]
from natural language descriptions.

Besides these, to the best of the authors’ knowledge, there is
no other comparable work to ours using LLMs for requirements
elicitation from scratch, as a means of capturing human behavior
from the collective knowledge of the LLMs. We believe this to be
an important gap in the literature and fulfilling a high-level design
goal in CPS research but also in general. This is in line with Fan et
al., who report a lack of volume and even a reluctance to use LLMs
for higher-level design goals [13].

Models about human behavior. Before developing the basic on-
tology of CPS-Human Interaction Behavior, we examined related
literature and, where available, the OWL files of the ontologies.
Blanch et al. [7], reviewed 17 ontologies of human behavior in a
broad sense, which covered principally neuroscience, phenotypes,
psychiatry and related health, which vary widely in size (ranging
from 110 to over 100K classes), rather than the behavior of humans
when they interact with CPSs specifically. Two of them do contain
relevant content, being the Cognitive Paradigm ontology (CogPo)
and Emotions & Cognition ontology (ECO), and most recently the
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behavior Change Intervention ontology (BCIO) was released. We
will highlight the pertinent content of each.

The CogPo [47] is aligned to the BFO top-level ontology and
a shallow list of terms with few relations. Key entities are types
of stimuli (a.o., Braille dots, heat, vibratory stimulation, etc.) and
stimulus modality (e.g., auditory, tactile), and a long list of behav-
ioral Experimental Paradigms mostly unrelated to CPSs. The ECO
[17] has content on sensors, contexts, and motivation, and relations
between them and on paper it is aligned to DOLCE with its D&S ex-
tension. Regarding behavior, it contains only Neutral behavior and
NonNeutral behavior, but no typology for what constitutes ’non-
neutral’. The BCIO [33] is also aligned to BFO and contains many
distinct high-level topics rather than concrete content relevant to
CPS interactions and our purpose is not behavior manipulation.
Generally usable themes include goals and actions, and its finan-
cial behavior opportunity may be recast as relevant for (almost)
law-breaking behavior, such as stealing, and Temporal behavior
opportunity could be re-cast as a user taking too much time or be
in a hurry in its interaction with a CPS.

Other models that might be of use are the fuzzy ontology for
“human activity representation” to recognize human behavior [11]
and human–CPS integration patterns [43]. The former is unrelated
to CPSs and we do not need the fuzzy reasoning. The human–CPS
interaction patterns in Tables 2 and 3 of the study [43] includes
typical common roles that are of general use, such as engineer and
technician.

In sum, no extant model or ontology is about human behavior as
they interact with CPSs, and thus also not regarding requirements
generation and scenario creation for CPSs, albeit that some of the
stimuli of CogPo may apply as well as the few types of behavior
found, as prospective terms.

9 CONCLUSION
We proposed a preliminary method, called SEED, that incorporates
an LLM to elicitate input for scenarios tailored to cyber-physical
systems. This has been shown to provide additional information
about uncommon, yet realistic, human-CPS interaction behavior
that may not be easy to discover by typical human stakeholders.
The initial user evaluation for a home energy management system
use case showed that the simple and ontology-mediated prompt
variants of our approach complement each other to increase diver-
sity in interaction scenarios. It is expected that this eventually will
result in a more robust CPS implementation.

Future work includes a more extensive evaluation, assessment
of a larger output set, and prospective automation of SEED.
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