
Web-based Graphical Querying of Databases through an
Ontology: the WONDER System

Diego Calvanese, C. Maria Keet, Werner Nutt, Mariano Rodríguez-Muro, Giorgio Stefanoni
KRDB Research Centre

Free University of Bozen-Bolzano
Bolzano, Italy

{calvanese, keet, nutt, rodriguez}@inf.unibz.it, giorgio.stefanoni@unibz.it

ABSTRACT
Biological scientists have made large amounts of data available on
the Web, which can be accessed by canned or precomputed queries
presented via web forms. To satisfy further information needs,
users currently have to have a good understanding of SQL and how
the data is stored in the database. While accessing information at
the ontological layer seems more appropriate, this poses two chal-
lenges: (1) to query data in databases and triple stores through an
ontology with little performance overhead, and (2) to provide an in-
tuitive web-based access to users that are not IT experts. To address
these issues, we draw upon the theory and technology developed
for Ontology-Based Data Access for DL-Lite. With an OWL ontol-
ogy and the DIG-QUONTO reasoner as building blocks, we have
developed an application that allows for graphical ontology brows-
ing, query formulation, and answer retrieval via a Web browser.
We have evaluated our system for Web-ONtology baseD Extrac-
tion of Relational data (WONDER) with an existing large genomics
database about horizontal gene transfer and found that it meets both
the scalability and the usability requirements.

Categories and Subject Descriptors
H.2.8 [Database Management]: database applications; H.5.2 [In-
formation Systems]: User Interfaces; I.2.4 [Artificial Intelli-
gence]: Knowledge Representation Formalisms and Methods

Keywords
Ontology-Based Data Access, Graphical Query Interface, Semantic
Web, Bioinformatics

1. INTRODUCTION
Experimentation with Semantic Web technologies, such as the

development and use of ontologies, is most notable in the subject
domain of health care and life sciences, which is exemplified by the
W3C Health Care and Life Science Interest Group dedicated to this
topic [22]. Full adoption by not only these front-runners but also
the large amount of end users, however, is a hurdle to be overcome.
Among the issues that have to be addressed are user-friendliness

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’10 March 22-26, 2010, Sierre, Switzerland.
Copyright 2010 ACM 978-1-60558-638-0/10/03 ...$10.00.

and scalability of the tools. In particular the latter issue is a chal-
lenge, given that scientists and medical practitioners require seman-
tic access to large amounts of data that in size exceeds by far the
customary toy examples. Moreover, there are few approaches that
marry the linking of an ontology at the semantic layer with data
in databases or triple stores and the ability to query the data by
availing of the knowledge represented in the ontology. These ap-
proaches either load the data from the database into the ABox as
instances in the ontology, such as DataMaster [14], or link the on-
tology to its instances that are stored in secondary storage, which
is pursued by [18, 21, 1] in the framework of Ontology-Based Data
Access (OBDA). OBDA experimentation has focussed on method-
ology and basic queries [13] and data integration [2] to demonstrate
the proof of concept. However, these examples neither did address
requirements that the system implementing OBDA should be end-
user usable nor that, given a Semantic Web setting, it should be
usable on the web through a web interface instead of a separate
application. Many biological databases do have a web interface,
however, and the result of a transformation from legacy technol-
ogy to Semantic Web technology ought to be at least as good as
the original (in casu, the online services these databases offer), else
there is no technological reason to migrate. In addition, now that
some domain experts have mastered SQL, with the new Semantic
Web technologies they would have to go through a new learning
process to master the SPARQL query language, which can be a
prohibiting step in adoption of new technologies. In fact, how, i.e.,
with which technology and languages, the required and desired fea-
tures are implemented should not be of the domain expert’s chores,
instead, the focus of his concern should be on what aspects of the
subject domain are in the system and what he can do with them.

To address these issues, we build upon the theory, technology,
and implementation developed for OBDA [9, 1, 18, 20] and ex-
tend it with the proverbial ‘last mile’ to make it user-usable. We
add a new Semantic Web technology-enabled web application to
the existing OBDA infrastructure to implement graphical ontology
browsing, query formulation, and execution in an Internet browser;
i.e, we realise this without the need for a stand-alone application
at the client side. Moreover, the rigorous formal characterisation
of the graphical query language and its coupling with an OWL
ontology on the one hand, and conjunctive queries (in SPARQL
syntax), epistemic queries [8], and the DIG-QUONTO [18] rea-
soner on the other, ensures correct formulation and evaluation of
the queries. The resulting Web-ONtology baseD Extraction of Re-
lational data (WONDER) system then not only meets the scalabil-
ity requirement, but also the usability requirement. To put this
to the test, we have used it on an existing widely used genomics
database that stores 4GB of data about horizontal gene transfer
among prokaryotes [12].

The remainder of the paper is structured as follows. We first in-
troduce the motivating and running example about horizontal gene
transfer (Section 2). The OBDA approach and its realisation are
described in Section 3. The novel addition to the OBDA infras-
tructure, i.e., the web-based graphical query feature for ontologies
and its implementation in the WONDER system, is described in Sec-
tion 4. We evaluate the WONDER system in Section 5 and conclude
in Section 6.

2. RUNNING EXAMPLE: HORIZONTAL
GENE TRANSFER

An important aspect of evolutionary microbiology is horizontal
gene transfer (HGT), where DNA from one bacterium is transmit-
ted to another bacterium; that is, in addition to the common strict
vertical descent of genetic traits from one generation to another,
bacteria can swap genes among each other. This is a significant
force in bacterial innovation, with key examples such as the trans-
fer of antibiotic resistance among pathogenic bacteria and degrada-
tion of xenobiotics by bacteria to clean up polluted environments.
Key questions scientists seek to answer are to find out which genes
have been horizontally transferred, what do they do, and where do
they come from. Few databases and tools, such as the HGT-DB
database and δρ-web tool [12, 16], have been developed that con-
tribute to addressing these questions, and in some cases functional
assessments of predicted acquired genes have been made, such as
the overrepresentation of virulence factors in HGT processes [15].
However, more comprehensive and integrated tools are required to
find answers concerning the origin, composition, quantity, and sig-
nificance of gene flow within microbial communities. Thus, given
the huge amounts of genomic data available nowadays, sophisti-
cated querying is an imperative to answer such scientific questions
that can have an impact on the lives of millions of people.

For this case study, we will enhance and simplify access to the
HGT-DB [12], which is a MySQL database with web-based front
end 1 that was kindly made available for testing purposes by its PI
Santiago Garcia-Vallvé. In a prior activity, the database has been
reverse engineered into an ORM conceptual data model and im-
proved upon through interactions with the domain experts. The
main classes in the diagram are about organisms and related infor-
mation, such as name, position in the species taxonomy, number
of chromosomes, and statistics of the genome (e.g., GC content),
and genes with related information, such as KEGG and COG code,
name, position on the genome, various statistics, and if it is pre-
dicted to be horizontally transferred; details about the conceptual
data model will be elaborated on in a separate paper. This concep-
tual data model has been transformed from its first order logic rep-
resentation in ORM into a DL-LiteA representation (see Section 3)
to make it ‘OBDA-ready’ for the current tools2.

The present HGT-DB web interface offers canned queries and
the possibility of retrieving text files of pre-computed queries, but
interesting queries for in silico biology, such as the following ones,
cannot be posed.
A. For organism Bordetella_pertussis, retrieve the genes that are

predicted to be acquired by hgt. This query can be trivially ex-
tended for B. pertussis (the causative agent of whooping cough),
or any other prokaryote in the database, to also retrieve at-
tributes such as the KEGG and COG codes;

B. Retrieve all the organisms that have gene products involved in

1http://genomes.urv.cat/HGT-DB/
2The OWL file and a DL notation is available as supplementary
material at http://obda.inf.unibz.it/obdahgtdb/
obdahgtdb.html; see also Section 3.1 and Fig. 2.

KEGG pathway ko03010. To make the query more specific,
one can change all the organisms with, say, for Helicobacter
pylori (the causative agent of stomach ulcers) all the genes;

C. For organisms of the Bacillus spp., retrieve the hgt prediction
of the gene dnaA;

D. For the Firmicutes, retrieve the organisms and their genes that
have a GC3 contents higher than 80.

Instead of browsing through the database to find the needle in the
haystack, we will not burn the haystack, but add a semantic layer
over the database to enhance the legacy system and simplify query-
ing for the needle by using the novel, domain expert friendly, graph-
ical query language that enables the users to pose queries at the on-
tology layer without having to bother learning to write SPARQL
and SQL queries.

3. ONTOLOGY BASED DATA ACCESS
To realise the easy-to-use semantic layer for the HGT-DB (or

any other relational database), we build upon the OBDA theory and
infrastructure. In OBDA, the objective is to provide access to one
or more data sources through a mediating ontology. The data in
the data sources are associated to the entities of the ontology (i.e.,
classes, datatypes, object properties, and data properties) by means
of mappings with formally defined semantics (see Fig. 1). An OWL
reasoner capable of working with the OBDA architecture is called
an OBDA enabled reasoner. We elaborate now on the components
of the specific OBDA framework used with the WONDER system.
We first introduce the formal OBDA framework in Section 3.1, and
then describe the software tools that realize the framework and that
allow us to design and deploy the HGT scenario in Section 3.2.

SourceUser Source

Semantic Layer Data Layer

User
Queries

OBDA-Enabled System

Ontology
Mappings

Source

Figure 1: OBDA architecture

3.1 Query Answering over DL-LiteA Ontologies
with Mappings

The OWL DL fragment of the Web Ontology Language (OWL)
is based on Description Logics (DLs) [5], which are logics specifi-
cally designed for structured representation of knowledge. We now
describe the formal syntax and semantics of DL-LiteA, a DL of the
DL-Lite family [9, 7] particularly well-suited for OBDA. The DL-
Lite family is at the basis of OWL 2 QL, one of the three profiles of
OWL 2, which has been designed specifically for efficient access
to large amounts of data3.

Syntax of DL-LiteA Ontologies. In DLs, the domain of interest
is represented by means of classes and properties4, which denote
unary and binary predicates, respectively. Following conceptual
data models and OWL, in DL-LiteA we distinguish between (ab-
stract) objects and (data) values. A class expression denotes a set
of objects, while a datatype5, denotes a set of values. Similarly,
an object property denotes a binary relation between objects, and
3OWL 2 is the new version of the Web Ontology Language OWL,
which is currently in the process of being standardized by the W3C,
see http://www.w3.org/2007/OWL/.
4Classes and properties are traditionally called concepts and roles
in DLs, but here we follow the OWL terminology.
5In OWL, most datatypes are taken from the set of XML Schema

http://genomes.urv.cat/HGT-DB/
http://obda.inf.unibz.it/obdahgtdb/obdahgtdb.html
http://obda.inf.unibz.it/obdahgtdb/obdahgtdb.html
http://www.w3.org/2007/OWL/

δ(Abbrev) v Organism An abbreviation is for an organism
ρ(Abbrev) v xsd:string An abbreviation is of type string
Organism v δ(Abbrev) Each organism has an abbreviation
(funct Abbrev) Each individual has a single abbreviation
∃GeneIsOnChromosomeOfOrganism v Gene Domain of object property
∃GeneIsOnChromosomeOfOrganism− v Organism Range of object property
Gene v ∃GeneIsOnChromosomeOfOrganism Each gene belongs to some organism
Organism v ∃GeneIsOnChromosomeOfOrganism− Each organism has some gene
(funct GeneIsOnChrOfOrganism) Each gene belongs to at most one organism
. . .

Figure 2: Section of the HGT application ontology.

a data property denotes a binary relation between objects and val-
ues. We assume to have a set {T1, . . . , Tn} of pairwise disjoint and
unbounded datatypes, each denoting a set val(Ti) of values (e.g.,
integers, strings, etc.). >d denotes the set of all values. Class ex-
pressions, denoted C, and object property expressions, denoted R,
are formed according to the following syntax, where A denotes a
class, P an object property, and U a data property:

C −→ A | ∃R | δ(U), R −→ P | P−.

Here, ∃R denotes an unqualified existential class expression, δ(U)
denotes the domain of U , and P− denotes the inverse of P .

A DL-LiteA ontology O = 〈T ,A〉, is constituted by a TBox T
representing intensional knowledge, and an ABox A, representing
extensional knowledge. The TBox is constituted by a set of axioms
of the form

C1 v C2,
(disj C1 C2),

ρ(U) v Ti, R1 v R2,
(disj R1 R2),

(funct R),

U1 v U2,
(disj U1 U2),
(funct U).

The axioms in the first row denote inclusions (ρ(U) denotes the
range ofU), those in the second row disjointness (distinct datatypes
are implicitly disjoint), and those in the third row functionality.
The ABox is constituted by a set of assertions of the form A(a),
P (a, a′), and U(a, `), where a, a′ are individuals (denoting ob-
jects) and ` is a literal (denoting a value). To ensure that DL-LiteA
enjoys the nice computational properties of the DL-Lite family [9],
we have to restrict the form of the TBox by requiring that object
and data properties occurring in functionality assertions cannot be
specialized (i.e., appear in the right hand side of an inclusion ax-
iom). We refer to [17] for a justification.

As an example, a portion of the HGT application ontology, which
overall has 31 classes, 32 object properties, 61 data properties, and
108 subclass axioms, is shown in Fig. 2, together with some of the
corresponding DL-LiteA axioms and their intuitive meaning.

Semantics of DL-LiteA Ontologies. The semantics of DL-LiteA is,
as usual in DLs, based on first-order interpretations I = (∆I , ·I),
where ∆I is a nonempty interpretation domain, partitioned into
two disjoint sets, ∆IO of objects, and ∆IV of values, the latter con-
taining for each datatype Ti a set of values val(Ti). The interpre-
tation function ·I maps each individual a to aI ∈ ∆IO , each class

Datatypes, version 1.1, and the RDF specification, see http://
www.w3.org/2007/OWL/.

A to AI ⊆ ∆IO , each object property P to P I ⊆ ∆IO × ∆IO ,
and each data property U to UI ⊆ ∆IO × ∆IV . Each literal ` is
interpreted as the value `I = val(`), each datatype Ti as the set
of values T Ii = val(Ti), and >Id = ∆IV . Then, the semantics of
expressions is determined as follows:

(∃R)I = {o | ∃o′. (o, o′) ∈ RI},
(P−)I = {(o, o′) | (o′, o) ∈ P I},

(δ(U))I = {o | ∃v. (o, v) ∈ UI},
(ρ(U))I = {v | ∃o. (o, v) ∈ UI}.

We adopt the unique name assumption, i.e., for every interpretation
I and distinct individuals or values c1, c2, we have that cI1 6= cI2 .

We say that I satisfies α1 v α2 if αI1 ⊆ αI2 , it satisfies
(disj α1 α2) if αI1 ∩ αI2 = ∅, and it satisfies (funct S) if SI

is a function (i.e., if (o, z1) ∈ SI and (o, z2) ∈ SI , then z1 =
z2). Also, I satisfies A(a) if aI ∈ AI , it satisfies P (a, a′) if
(aI , a′I) ∈ P I , and it satisfies U(a, `) if (aI , val(`)) ∈ UI .

Query Answering. The main inference service that we consider
here is query answering over an ontology. A conjunctive query
(CQ) q over an ontology O is an expression of the form q(~x) ←
∃~y.conj (~x, ~y), where conj (~x, ~y) is a conjunction of atoms of the
formD(z), S(z, z′), z = z′, whereD denotes a class or a datatype
and S an object or data property occurring in O, and z, z′ are in-
dividuals or literals in O or variables in ~x or ~y. Given an inter-
pretation I = (∆I , ·I), qI is the set of tuples of ∆I that, when
assigned to the variables ~x, make the formula ∃~y.conj (~x, ~y) true
in I. Then, the set cert(q,O) of certain answers to q over O is
the set of tuples ~a of individuals or literals appearing inO such that
~aI ∈ qI , for every model I of O. In the following we will also
make use of unions of CQs (UCQs), which are disjunctions of CQs.
Query answering is the problem of computing cert(q,O), given a
(U)CQ q and a DL-LiteA ontology O.

The certain answers to an (U)CQ q over a DL-LiteA ontology
〈T ,A〉 can be computed by first rewriting q using T into a new
UCQ q′, and then evaluating q′ over A, considered simply as a
database [9, 17]. To overcome the limitations of CQs, and express
e.g., order conditions on literals, we resort to EQL-Lite queries,
which are obtained by embedding into an arbitrary SQL query one
or more (U)CQs (over a DL-LiteA ontology) to which we have ap-
plied an epistemic operator. We refer to [8] for details, and just note
that also EQL-Lite queries can be rewritten into queries that can be
evaluated over the ABox to produce the certain answers.

http://www.w3.org/2007/OWL/
http://www.w3.org/2007/OWL/

Ontologies with Mappings to a Database. A key aspect in OBDA
is that the database D accessed through (the TBox of) the ontol-
ogy might have been developed independently of the ontology it-
self. Moreover, while the ontology models the domain of inter-
est in terms of (abstract) objects, the database stores data values
belonging to concrete data types. To bridge the gap between the
data level and the ontology level, we resort to mappings, which
intuitively specify how the objects populating the classes and prop-
erties of the ontology are constructed from the data values stored
in the database. Specifically, we follow the approach introduced
in [17], and make use of a setM of mapping assertions of the form
Φ(~x) ; Ψ(~y,~t), where Φ(~x) is an arbitrary SQL query over the
database with ~x as output variables. Instead, Ψ(~y,~t) is a CQ with-
out existentially quantified variables over the TBox T of the ontol-
ogy, whose atoms make use of the variables ~y (a subset of ~x) and
of so-called variable terms ~t. Variable terms are built by applying
function symbols to variables or literals, and are used to construct
the identifiers of individuals from the data values extracted by Φ
from D. An example of mapping assertions for the HGT TBox is
shown in Fig. 3, where we have used the function symbols gene,
organism, and function, to create instances of the classes Gene ,
Organism, and GeneFunction , respectively.

SELECT id, abbrev

FROM organism

JOIN genes

ON abbrev = idorganism

; OrganismHasGene(
gene(id),
organism(abbrev))

SELECT id, kegg

FROM genes

; GeneHasGeneFunction(
gene(id), function(id))
KEGG(function(id), kegg)

Figure 3: Extract of the mapping from the HGT-DB database
to the DL-LiteA application ontology.

Intuitively, a DL-LiteA ontology with mappings 〈T ,M,D〉 has
the same semantics as the ontology 〈T , AD,M〉, where AD,M is
a (virtual) ABox generated by “applying” the mappings in M to
the data in D. Answering a (U)CQ or an EQL-Lite query q over
a DL-LiteA ontology with mappings 〈T ,M,D〉 can be carried out
by first rewriting (the UCQs embedded in) q, and then “unfolding”
the resulting query w.r.t. M using logic-programming techniques.
This results in a single SQL query expressed over D that can be
evaluated by a standard commercial relational database engine. We
refer to [17] for the formal details.

3.2 Ontology-Based Data Access software
We present now two tools that implement the theory described

in the previous section and that are used in the development and
deployment of the WONDER project, namely the DIG-QUONTO
server and the OBDA Plugin for Protege 3.3.1.

DIG-QUONTO [18] is the DIG 1.1 Interface [6] implementa-
tion for the QUONTO reasoner. DIG-QUONTO is able to deal
with ontologies with mappings (as described in the previous sec-
tion) in which D is a relational database accessible through JDBC
connectors. The reasoning and mapping techniques for DL-LiteA
implemented in DIG-QUONTO are such that the ABox A charac-
terized by 〈D,M〉 is never materialized while computing the an-
swers to reasoning task involving A. Instead, using the RDBMS-
ontology mapping module, DIG-QUONTO is able to rewrite the
original queries into SQL queries that are executed by the RDBMS.
This feature is specially important in the HGT scenario, as material-
izing the HGT ABox would imply loading several gigabytes of data
in main memory, turning the scenario unfeasible. DIG-QUONTO

implements all reasoning services developed for DL-LiteA, which
were outlined in the previous section. In order to allow access
to functionality available in DIG-QUONTO that is not considered
in DIG 1.1, DIG-QUONTO implements the following extensions:
(i) In order to expose its OBDA functionality, DIG-QUONTO im-
plements the OBDA Extensions to DIG 1.1 [10, 20], which have
as main objective to augment DIG 1.1 with the concepts of Data
Source and Mapping; (ii) In order to expose its UCQ answering
service, DIG-QUONTO implements the DIG 1.2 specification [19],
an extension to DIG 1.1 that provides the ability to pose UCQs to
DIG reasoners; (iii) In order to expose the functionality not covered
by any of the extensions mentioned above, e.g., epistemic query an-
swering, ontology consistency checking, etc., DIG-QUONTO uses
ad-hoc extensions to the DIG protocol; a reference to these exten-
sions can be found on the QUONTO website6.

The OBDA Plugin for Protégé 3.3.17 [10, 21] is a plugin for the
well known ontology editor that provides facilities to develop on-
tologies with mappings. Using the OBDA plugin, we are able to
associate a JDBC data source to an existing OWL ontology and
to relate SQL queries over the data source to the entities (classes
and properties) of the ontology. Moreover, using the plugin we are
able to synchronize and query the created domain formalisation for
OBDA with any DIG reasoner implementing the OBDA extensions
to DIG, e.g., DIG-QUONTO. A key feature, used in the develop-
ment of the HGT formalisation for OBDA, is the ability of the plu-
gin to pose UCQs and epistemic queries to reasoners supporting
those services. UCQs are expressed in a restricted SPARQL syn-
tax, whereas epistemic queries are expressed in EQL syntax. The
queries are transformed into DIG requests that are sent to the rea-
soner and whose response can be visualized with the plugin.

4. WEB-BASED GRAPHICAL QUERYING
Suppose a biologist wants to retrieve all genes of the organism
Neisseria meningitidis for which horizontal gene transfer is pre-
dicted. He can express this request as a CQ over the ontology,
which can be written in SPARQL syntax in the OBDA plugin as:

SELECT $gene
WHERE {$gene :GeneHasOrganism $org.

$org :OrganismHasOrganismInfo $info.
$info :OrganismName ’Neisseria meningitidis’.
$gene :GeneHasHGTPredictionGene $pred.
$pred :Prediction ’HGT’}

Suppose now that the biologist would like to generalise his request,
asking for organisms that either have a name including “Neisse-
ria” or have a GC3stats value ≥ 80. Since this query con-
tains a disjunction, it goes beyond the expressivity of CQs and since
there is also a comparison, it goes beyond the expressivity of UCQs.
It can be captured, however, by the following query in EQL, which
combines SPARQL and SQL syntax:

SELECT stbl.gene
FROM sparqltable

(SELECT $gene $orgName $gcVal $predVal
WHERE {$gene :GeneHasOrganism $org.

$org :OrganismHasOrganismInfo $info.
$info :OrganismName $orgName.
$gene :GeneHasHGTPredictionGene $pred.
$pred :Prediction $predVal.
$gene :GeneHasGCstatsGene $gcstats.
$gcstats :GC3 $gcVal}) stbl

WHERE stbl.orgName LIKE ’%Neisseria%’ AND
(stbl.predVal = ’hgt’ OR stbl.gcVal > ’80’)

While a diagram like the one in Fig. 2, capturing the classes and
properties of the DL-LiteA ontology, conveys a simple and easy-to-

6http://www.dis.uniroma1.it/~quonto/
7http://obda.inf.unibz.it/protege-plugin/

http://www.dis.uniroma1.it/~quonto/
http://obda.inf.unibz.it/protege-plugin/

grasp view of the data, the query examples show that a user nev-
ertheless needs to be versatile with technically involved query lan-
guages in order to express his information request. With the WON-
DER system we aim at bridging the gap between the conceptual
model and the information demand of users, by offering not only
a graphical view of the application ontology but also a graphical
query language.

The way in which the WONDER system lets users create graph-
ical queries resembles the one proposed for SQL query formula-
tion in the QBD approach for databases [3] and the stand-alone
application OntoVQL for querying OWL-DL ontologies [11], but
WONDER uses Semantic Web technologies for interoperability and
is web-based, respectively. GRQL [4] and NITELIGHT [23]
provide a visual, web-based system, where GRQL allows progres-
sive exploration of an RDF/S class and its properties based on a
tree-view and hiding RQL, and the latter allows writing SPARQL
queries over an RDF-ontology, but WONDER also allows one to
graphically browse the lean OWL-ontology it uses, including the
properties, and supports more complex queries. We first describe
the theory and then the implementation of the WONDER system.

4.1 WONDER’s Formal Foundation for On-
tology Browsing and Querying

Accessing information by means of an ontology comprises three
activities:

1. browsing the ontology, to understand the structure of the in-
formation;

2. formulating a query, to express an information request; and
3. retrieving data that answer the query according to a high-

level semantics.
So far, our work focused on support for the first two activities be-
cause this is where users encounter a bottleneck when they want to
get more out of available data sources. The WONDER Web inter-
face consists of a separate component, called “pane”, for each of
these activities.

Ontology Browsing. The ontology pane shows the ontology as a
graph, which represents the elements of an ontology together with
some of the axioms that hold between them. In the graph, there
are two kinds of nodes, class nodes (visualized as roundtangles),
and attribute nodes (shown as ovals), and three kinds of edges, is-a
links, connecting class nodes and shown as thin lines, role links,
also connecting class nodes, but shown as thick lines, and attribute
links, connecting class and attribute nodes and shown as thick lines.
Role links represent object properties, while attribute links and at-
tribute nodes represent data properties. A role link can connect a
node with itself, which is not possible for is-a and attribute links.
Nodes, role links, and attribute links are labeled with names of
classes, object properties, and data properties, respectively. Ta-
ble 1 gives an overview of the graphical elements occurring in the
ontology pane and their semantics. Note that this representation
mentions only the name of a data property, not its range. Similarly,
other constraints expressible in DL-LiteA are not visualized (e.g.,
functionality or mandatory participation of a class in a property),
since a user need not be aware of them to formulate a query.

Since an ontology will often not fit into a single pane, ontologies
can be divided into several pages, which are shown individually.
Conceptually, the pages are glued together by the classes that occur
in more than one page. The reader is referred to the online supple-
mentary material to see the full interface.

Query Formulation. The query formulation tool provides visual
means to specify CQs extended with comparisons over an ontology.

Technically, a WONDER query consists of a query graph and a con-
straint expression. The query graph is edited in the query pane, and
there is a special constraint editor that can be started from the query
pane.

The query graph resembles an ontology graph, except for four
notable differences: (i) there are no is-a links, (ii) a class node can
be labeled with more than one class name, (iii) to each node, a
distinct variable is associated, which becomes visible if the mouse
hovers over the node, and (iv) some of the nodes are highlighted.
The semantics of the two kinds of graphs, in spite of their apparent
similarity, differs substantially, in that the first represents a set of
axioms while the latter a set of atoms and projection variables. In
Table 1 we show the possible nodes of a query graph and the links
between them together with the atoms they stand for. The variables
x, y stand for the variables attached to the nodes appearing in each
row. The semantics of a query graph (ignoring for the time being
the highlighted nodes) is the conjunction conj (~z) of the atoms cor-
responding to the elements of the graph. We exploit the apparent
similarity between ontology and query graphs to present the task of
query construction as one of copying elements from the ontology
pane into the query pane and joining them together. The user re-
peatedly selects several nodes and links in the ontology pane and
copies them into the query pane. When selecting a role or attribute
link, the two adjacent nodes are selected, too. In the query pane,
one can select several class nodes and join them. As a result, these
nodes are merged into one, which inherits all the class labels and
the links of the selected nodes.

With the Constraint Editor one can impose elementary con-
straints on the query variables, defined in terms of the built-in oper-
ators “=”, “≤”, etc. as well as by the SQL string matching operator
LIKE. They can be combined with boolean connectives in the Con-
straint Manager, which results in a constraint expression cons(~w),
where the vector ~w ⊆ ~z comprises the constrained variables.

Note that constraints involving inequalities and string matching
are crucial for the needs of our application, but are not supported by
the semantics of CQs over DL-LiteA, which allow only for equality
constraints. For this reason, given a conjunction of atoms conj (~z)
and a constraint expression cons(~w), we define their semantics as
that of an EQL-Lite query, which imposes constraints on top of
the certain answers retrieved by a DL-LiteA CQ. Let ~x be a vector
comprising the variables corresponding to the highlighted nodes
in the query pane, which determine the output of the entire EQL-
Lite query, and let ~y be a vector comprising the variables in ~x and
in ~w. These are the distinguished variables of the CQ evaluated
under DL-LiteA-semantics. The EQL-Lite query, where conj (~z) is
written in SPARQL notation and in cons(stbl.~w) all variables
are prefixed by stbl, is as follows:

SELECT stbl.~x FROM sparqltable
(SELECT ~y WHERE {conj (~z)}) stbl

WHERE cons(stbl.~w)
(1)

Due to the semantics of EQL-Lite, the results of the query above are
obtained by (i) computing the certain answers for the CQ q(~y) ←
conj (~z), (ii) filtering the resulting tuples according to the constraint
cons(~w), and (iii) projecting onto ~x. When editing the query graph
and the constraints, the corresponding EQL-Lite query (1) is shown
in a special window in the menu on the right-hand side.

The formulation of a query with WONDER still requires some
effort, which should not be lost when creating a new query. There-
fore, any query can be stored under a name and description. A user
also can load a stored query into the query pane, modify it, and
store it under another name. The possibility to load stored queries
provides a functionality similar to the one of canned queries.

Element name Graphical Semantics of Semantics of building
Representation ontology elements blocks of query graphs

Class node C C(x)

C(x), D(x)

Is-a link C v D

Attribute node and link δ(A) v C
C(x), A(x, y)

ρ(A) v >d

Role link ∃P v C
C(x), R(x, y), D(y)∃P− v D

Table 1: Name and graphical representation of ontology elements and of building blocks of query graphs in WONDER.

Figure 4: Query to retrieve the genes of Neisseria spp. that have a GC3 content > 80 or are predicted to be horizontally transferred.
The textual version of the graphically constructed query (on the right) is generated automatically by the WONDER system.

Query Execution. When the query in the query pane has been
executed, the results can be retrieved either in browse mode or in
batch mode. In browse mode, the answer tuples can be viewed on
web pages, each containing a predefined number of tuples, which
is useful when the number of answers is low. In batch mode, the
entire set of answer tuples can be downloaded as a CSV file.

4.2 WONDER Implementation
In this section, we first introduce the high-level architecture of

the WONDER system and then outline the implementation of the
query environment.

Architecture. The WONDER system extends the OBDA architec-
ture presented in Fig. 1 by using as client a web application that pro-
vides a visual query environment exploiting the services provided
by DIG-QUONTO (see Fig. 5). The web application is divided into
two main parts: the server-side and the client-side, which com-
municate with each other using AJAX. This technology allows to
asynchronously transfer data from the server to the client. WON-
DER uses an additional database for storing meta-information, such
as registered users and their saved queries.

The WONDER server is a semantic-aware application written us-
ing the Java EE framework, which is responsible for providing
interaction with DIG-QUONTO and access to the metadata. It is
semantic-aware in the sense that it holds the ontology (OWL file)

Server
DB RDBMS

Data LayerDIG-OBDA
+ extensions
(HTTP/XML)

DIG-QuOnto
Server

JDBCServer Side

Client Side

WONDER system

AJAX

Figure 5: The architecture of the WONDER system.

and the set of semantic mappings (OBDA file) required by OBDA.
These files are used at query execution time for accessing the query
answering service provided by DIG-QUONTO. The communica-
tion between the server and DIG-QUONTO is made over HTTP by
using the DIG protocol. The query answering service returns the
result set computed from the execution of the translated query over
the relational database. The results are stored in a CSV file that
logged users can download. During this process, the first hundred
tuples are sent back to the client, which is in charge of presenting
them. The advantage of this feature is to reduce latency of transfer-
ring data over the Internet.

Query Environment. The client-side is responsible for providing
the graphical representation of the ontology and a visual query en-
vironment for creating the queries.

There are different technologies that allow for the creation of
complex diagrams, together with the support for user interaction;
the most interesting being Macromedia Flash, HTML Canvas, and
Scalable Vector Graphics (SVG). We based our application on SVG,
an XML-based language for defining vector graphics. The reasons
for this choice are that SVG is a W3C-recommendation, it allows
the injection of JavaScript code for handling user interaction, and,
moreover, images can be modified at runtime by using the standard
DOM interface.

One of the biggest issues faced during the development of this
query environment is the decision on how to extract the graphi-
cal representation of the ontology and convert it into an SVG im-
age. We inspected two possible solutions: dynamically generat-
ing the diagram from the ontology and relying on an external tool
that helps the user in drawing such a diagram. On the one hand,
the former solution is the most attractive one since it does not re-
quire, ideally, any user involvement. On the other hand, it is not
always possible to dynamically create a schema without overlap-
ping figures and, generally, user involvement is needed to improve
the diagram anyway. Therefore, the WONDER system relies on an
external tool, which produces an XML file containing information
on how to visualise the ontology. For this we have defined an XML
Schema language called OWLX, which provides graphical proper-
ties (e.g., colour, positioning) for each element that has to be rep-
resented. The advantage of this solution is that the SVG can then
be dynamically generated by applying an XSLT transformation to
the OWLX file. This graphical information could have been stored
inside the OWL file describing the ontology rather than in a sepa-
rate file, but then the XSLT transformation would have been more
complicated and the OWL file would have contained information
outside the domain of interest, which was deemed undesirable.

As soon as the ontology is created and opened, the SVG dia-
gram is inserted in the web page and sent to the browser. At this
point, users can interact with the schema and select elements that
are interesting for their queries and move them to the Query Pane.
The Query Pane is an SVG-based environment, which aims at giv-
ing users the possibility to visually refine their queries. All the
operations defined in the query language have been implemented
by means of JavaScript functions. Moreover, the queries created
through this interface are stored, together with layout information,
in a datastructure, which is used for creating a textual representa-
tion of the designed query at query execution time. Finally, this
textual query is sent to the server-side for execution and the results
are shown in an HTML table in the results pane.

5. EVALUATION
In this section we compare the WONDER system with the origi-

nal HGT-DB, and reflect on the usage of the chosen Semantic Web
technologies.

Web-based OBDA-enhanced Access to Biological Databases.
Although both the HGT-DB and the WONDER system’s interfaces
are web-based, the latter makes use of SVG, a W3C recommenda-
tion, as a component for graphical browsing and querying, whereas
the former uses the rigid HTML+scripts like other online biological
database. In addition, the WONDER icons are not mere figures but
rely on the formal foundation (see Sections 3.1 and 4.1) and thereby
have an unambiguous meaning thanks to the correspondence with
the underlying DL-LiteA application ontology stored as OWL file,
and with the SPARQL and EQL-Lite queries, which are automati-
cally generated and thus syntactically correct.

For the domain experts, the principal advantages of the differ-
ences in the used technologies are that the WONDER system gives

the freedom to construct any query deemed necessary, yet also of-
fers the feature of template queries, whereas the ‘standard’ way of
accessing biological databases offers only canned and precomputed
queries. Furthermore, when domain experts create a new type of
query, they do not have to contact the database administrator first,
but simply can do it through the graphical query interface, thereby
having greater control over the data source. For instance, when we
suggested several queries and asked our domain experts for sample
queries irrespective of the current interface, all queries, including
those mentioned in Section 2, were beyond the current HGT-DB’s
web interface possibilities. Formulating such complex queries was
greatly facilitated by having communicated the conceptual model
that provides a succinct and clear overview of what kind of data
is stored in the database, instead of bothering domain experts with
how it is stored and how to get data out of the database. Concern-
ing the types of queries that can be posed through the graphical
interface in WONDER, the main additional ones, compared to the
HGT-DB web interface, involve flexible projections of multiple at-
tributes together with selections of values, and modifications of the
WHERE clause through the constraint manager (e.g., changing AND
for OR and nesting of constraints). Without these options, the do-
main expert is left to browse the full table and manually examine
the data, which is a laborious task and error prone.

Assessment of Semantic Web Technologies. It is well-known that
scaling up Semantic Web technologies to large ontologies and/or
large amounts of instances is not trivial. The original HGT-DB was
about 4GB, with many data items for about roughly 500 organisms
(a tuple each), which have together 1.7 million genes (also a tuple
each) and, depending on the query, for which the join has to be
computed. Performance results for the WONDER system are as
follows (the HGT-DB is hosted on a Windows XP PC with an Intel
Core Duo 1.66 Ghz proc., 2 Gb of RAM and running Oracle 10g):

Query (see Section 2) A B C D
Tuples retrieved 226 392 13 3119
WONDER interface (ms) 2826 48436 60767 50562

The corresponding SPARQL queries and a performance compari-
son of them with a bare DIG-client are included in the supplemen-
tary material online (see footnote 3). Notable is that the additional
semantic usability layer of WONDER has an insignificant effect on
overall performance.

In addition to secondary storage for the instances in the ABox,
another Semantic Web performance improver is built into the cur-
rent realisation of OBDA: the use of an ontology language of rel-
atively low expressivity (recollect Section 3.1). It is indeed the
case that not all constraints of the original first order logic theory
(ORM conceptual data model; see Section 2) can be represented
in the DL-LiteA version used in the WONDER system, but fancy
constraints, such as value restrictions, are enforced in the database
already anyway (hence, not representing them in the TBox will not
lead to a state that is inconsistent with the semantics of the domain).
Yet at the same time, DL-LiteA is expressive enough regarding ex-
istential quantification and functionality of object and data proper-
ties to offer some reasoning services compared to a mere SPARQL
query over a bare taxonomy in an OWLized .obo file8, which is
relevant in particular for data integration under incomplete infor-
mation. Data integration is a major drive for bio-ontologists [22,
24], which the WONDER infrastructure thus can cope with; this
will be demonstrated at a later date for the HGT-DB scenario and
various extensions (e.g., the HEG-DB, species taxonomy).
8http://bioontology.org/wiki/index.php/
OboInOwl:Main_Page

http://bioontology.org/wiki/index.php/OboInOwl:Main_Page
http://bioontology.org/wiki/index.php/OboInOwl:Main_Page

An indirect beneficial effect of using Semantic Web technologies
was the improvement of the database itself. Aside from creating
views to make more transparent mappings and adding indexes to
the tables to achieve better query answering times, we also trans-
ferred the data from MySQL to Oracle, which had a major bene-
ficial impact on the performance of the joins of the full organism
and gene tables. Although this database engineering fine-tuning
could have been done when the HGT-DB was developed, it was
not deemed essential. However, when scaling up Semantic Web
technologies to deal with large amounts of data, considering perfor-
mance optimizations is a significant parameter for success. Over-
all, we now not only have similar or better response times with
the semantically enhanced HGT-DB in the WONDER system com-
pared to the plain HGT-DB web-interface, but also offer good per-
formance with queries that were hitherto not possible. Taken to-
gether, the HGT-DB enhanced with the WONDER system empow-
ers the domain experts to carry out more sophisticated in silico ex-
periments more quickly.

6. CONCLUSIONS
We have introduced the Web-ONtology baseD Extraction of Re-

lational data (WONDER) system, which builds upon the theory,
technology, and implementation developed for Ontology-Based
Data Access. This extension implements graphical ontology brows-
ing, query formulation, and query execution in a Web browser. The
graphical browsing and query language enjoys a rigorous formal
characterisation and uses a coupling with an OWL file on the one
hand and CQs (in SPARQL syntax) and EQL-Lite queries for the
DIG-QUONTO reasoner on the other hand, thereby ensuring correct
formulation and evaluation of the queries. This WONDER system
not only meets the scalability requirement, but also the usability re-
quirement to allow domain experts to query through a web browser
the database without the need to learn SPARQL or EQL-Lite. We
have evaluated this infrastructure with the horizontal gene trans-
fer genomics database HGT-DB. We are currently planning feature
extensions, such as query completion and more sophisticated ontol-
ogy browsing, and use case extensions in the direction of database
integration.

Acknowledgements. We thank our domain experts Santiago Garcia-
Vallvé and Mark van Passel.

7. REFERENCES
[1] A. Acciarri et al. QuOnto: Querying Ontologies. In Proc. of

AAAI 2005, pages 1670–1671, 2005.
[2] A. Amoroso, G. Esposito, D. Lembo, P. Urbano, and

R. Vertucci. Ontology-based data integration with
MASTRO-I for configuration and data management at
SELEX Sistemi Integrati. In Proc. of SEBD 2008, pages
81–92, 2008.

[3] M. Angelaccio, T. Catarci, and G. Santucci. QBD*: A
graphical query language with recursion. IEEE Trans. on
Software Engineering, 16(10):1150–1163, 1990.

[4] N. Athanasis, V. Christophides, and D. Kotzinos. Generating
on the fly queries for the semantic web: The ICS-FORTH
graphical RQL interface (GRQL). In Proc. of ISWC, pages
486–501, 2004.

[5] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F.
Patel-Schneider, editors. The Description Logic Handbook.
Cambridge University Press, 2003.

[6] S. Bechhofer, R. Möller, and P. Crowther. The DIG
description logic interface. In Proc. of DL 2003, volume 81

of CEUR, ceur-ws.org, pages 196–203, 2003.
[7] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and

R. Rosati. Data complexity of query answering in description
logics. In Proc. of KR 2006, pages 260–270, 2006.

[8] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and
R. Rosati. EQL-Lite: Effective first-order query processing
in description logics. In Proc. of IJCAI 2007, 2007.

[9] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and
R. Rosati. Tractable reasoning and efficient query answering
in description logics: The DL-Lite family. J. of Automated
Reasoning, 39(3):385–429, 2007.

[10] D. Calvanese and M. Rodríguez. Towards an open
framework for Ontology Based Data Access with Protégé
and DIG 1.1. In Proc. of OWLED 2008, 2008.

[11] A. Fadhil and V. Haarslev. OntoVQL: a graphical query
language for OWL ontologies. In Proc. of DL’07, 2007.
Bressanone, Italy.

[12] S. Garcia-Vallvé, E. Guzman, M. Montero, and A. Romeu.
HGT-DB: a database of putative horizontally transferred
genes in prokaryotic complete genomes. Nucleic Acids
Research, 31(1):187–189, 2003.

[13] C. M. Keet, R. Alberts, A. Gerber, and G. Chimamiwa.
Enhancing web portals with Ontology-Based Data Access:
the case study of South Africa’s Accessibility Portal for
people with disabilities. In Proc. of OWLED 2008, 2008.

[14] C. Nyulas, M. OConnor, and S. Tu. DataMaster – a plug-in
for importing schemas and data from relational databases
into Protégé. In Proc. of Protégé 2007, 2007. Stanford
Medical Informatics.

[15] M. W. v. Passel et al. Phylogenetic validation of horizontal
gene transfer? Nature Genetics, 36(10):1028, 2004.

[16] M. W. v. Passel et al. Deltarho-web, an online tool to assess
composition similarity of individual nucleic acid sequences.
Bioinformatics, 21(13):3053–3055, 2005.

[17] A. Poggi et al. Linking data to ontologies. J. on Data
Semantics, X:133–173, 2008.

[18] A. Poggi, M. Rodriguez, and M. Ruzzi. Ontology-based
database access with DIG-Mastro and the OBDA Plugin for
Protégé. In K. Clark and P. F. Patel-Schneider, editors, Proc.
of OWLED 2008 DC, 2008.

[19] Racer Systems GmbH & Co. KG. Release notes for
racerpro 1.9.2 beta. Website, Last access, July 2008. http:
//www.sts.tu-harburg.de/~r.f.moeller/
racer/Racer-1-9-2-beta-Release-Notes/
release-notes-1-9-2se8.html.

[20] M. Rodríguez-Muro and D. Calvanese. An OBDA extension
to the DIG 1.1 Interface. Website, July 2008.
http://obda.inf.unibz.it/dig-11-obda/.

[21] M. Rodríguez-Muro, L. Lubyte, and D. Calvanese. Realizing
Ontology Based Data Access: A plugin for Protégé. In Proc.
of the ICDE Workshop IIMAS 2008. IEEE CS Press, 2008.

[22] A. Ruttenberg et al. Advancing translational research with
the Semantic Web. BMC Bioinformatics, 8(Suppl 3):S2,
2007.

[23] P. R. Smart et al. A visual approach to semantic query design
using a web-based graphical query designer. In Proc. of
EKAW 2008, 2008.

[24] B. Smith et al. The OBO Foundry: Coordinated evolution of
ontologies to support biomedical data integration. Nature
Biotechnology, 25(11):1251–1255, 2007.

ceur-ws.org
http://www.sts.tu-harburg.de/~r.f.moeller/racer/Racer-1-9-2-beta-Release-Notes/release-notes-1-9-2se8.html
http://www.sts.tu-harburg.de/~r.f.moeller/racer/Racer-1-9-2-beta-Release-Notes/release-notes-1-9-2se8.html
http://www.sts.tu-harburg.de/~r.f.moeller/racer/Racer-1-9-2-beta-Release-Notes/release-notes-1-9-2se8.html
http://www.sts.tu-harburg.de/~r.f.moeller/racer/Racer-1-9-2-beta-Release-Notes/release-notes-1-9-2se8.html
http://obda.inf.unibz.it/dig-11-obda/

	Introduction
	Running Example: Horizontal Gene Transfer
	Ontology Based Data Access
	Query Answering over DL-LiteA Ontologies with Mappings
	Ontology-Based Data Access software

	Web-based Graphical Querying
	WONDER's Formal Foundation for Ontology Browsing and Querying
	WONDER Implementation

	Evaluation
	Conclusions
	References

