Relational databases

Models in biology

Thesauri Sun

auri Sum

Outline

Semantic Web Technologies

Lecture 4: Bottom-up ontology development

Maria Keet email: keet -AT- inf.unibz.it home: http://www.meteck.org blog: http://keet.wordpress.com

KRDB Research Center Free University of Bozen-Bolzano, Italy

24 November 2009

Bottom-up overview

Relational databases

Data analysis Automatic Extraction of Ontologies Example: manual extraction

Models in biology

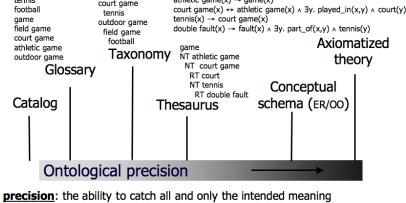
General idea Case study

Thesauri

B

2/43

Bottom-up overview	Relational databases	Models in biology	Thesauri	Summary
	00 0 000	000 0000000000000		


Bottom-up

- From *some* seemingly suitable legacy representation to an OWL ontology
 - Database reverse engineering
 - Conceptual model (ER, UML)
 - Frame-based system
 - OBO format
 - Thesauri
 - Formalizing biological models
 - Excel sheets
 - Text mining, machine learning, clustering
 - etc...

		Models in biolog 000 000000000000	55	nesauri Sur
	A fev	v languages		
ad hoc Hierarchies (Yahoo!)	structured Glossaries XML D	XML Schema form TDs Taxono	al	ption Logics (OWL)
Terms			inies	
'ordinary' Glossaries	Principled, informal hierarchies	Conceptual Model (UML, F	s	
Data Dictionaries (EDI)	i	DB Schema	Frames	General Logic
Glossaries & Data Dictionaries	Thesauri, Taxonomies	MetaData, XML Schemas		l Ontologies rence

& Data Models

(for a logical theory, to be satisfied by intended models)

(from Gangemi, 2004)

6/43

Bottom-up overview	Relational databases	Models in biology	Thesauri	Summary
	00 0 000	000 000000000000		

Examples: OBO and Protégé-frames

- Frames (as in Protégé) into OWL-DL (see Zhang & Bodenreider, 2004), and its problems doing that to the FMA
 - Not a formal transformation
 - Slot values generally correspond to necessary conditions—so they took a first guess to define an anatomical entity as the sum of its parts
 - Global axioms dropped (with an eye on the reasoner)
 - After the conversion of the 39,337 classes and 187 slots from FMA in Protégé (ignoring laterality distinctions), FMAinOWL contains 39,337 classes, 187 properties and 85 individuals
 - Additional optimizations: optimizing domains and subClassOf axioms
 - But still caused Racer to fail to reason over the whole file; restricting properties further obtained results

ttom-up overview	Relational databases	Models in biology	Thesauri	Summary
	00 0	000 000000000000		
	Examples: OBC	and Protégé-f	rames	

• OBO in OWL 2 DL

Bott

- OBO is a Directed Acyclic Graph (with is_a, part_of, etc. relationships)
- with some extras (a.o., date, saved by, remark)
- and 'work-arounds' (not-necessary and inverse-necessary) and non-mappable things (antisymmetry)
- There are several OBO-in-OWL mappings, some more comprehensive than others

Bottom-up overview	Relational databases ●○ ○○ ○○○	Models in biology	Thesauri	Summary

General considerations

- Let us for a moment ignore the issues of data duplication, violations of integrity constraints, hacks, outdated imports from other databases to fill a boutique database, outdated conceptual data models (if there was one), and what have you
- Some data in the DB—mathematically instances—actually assumed to be concepts/universals/classes
- each tuple is assumed to denote an instance and, by virtue of key definitions, to be unique in that table, but such a tuple has *values* in each cell of the participating columns; however, OWL ABox expects *objects* (impedance mismatch)
- instances-but-actually-concepts-that-should-become-OWLclasses and

real-instances-that-should-become-OWL-instances

Bottom-up	overview	

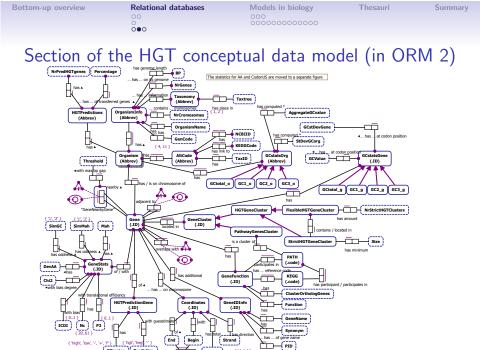
00

General considerations


- Reuse/reverse engineer the physical DB schema
- Reuse conceptual data model (in ER, EER, UML, ORM, ...)
- But.
 - Assumes there was a fully normalised conceptual data model,
 - Denormalization steps to flatten the database structure, which, if simply reverse engineered, ends up in the ontology as a class with umpteen attributes
 - Minimal (if at all) automated reasoning with it
- Redo the normalization steps to try to get some structure back into the conceptual view of the data?
- Add a section of another ontology to brighten up the 'ontology' into an ontology?
- Establish some mechanism to keep a 'link' between the terms on the ontology and the source in the database?

12/43

Bottom-up overview	Relational databases	Models in biology	Thesauri	Summary
	00 0 •00	000 000000000000		


Manual Extraction

- Most database are not neat as assumed in the 'Automatic Extraction of Ontologies' (e.g., denormalised)
- Then what?
 - Reverse engineer the database to a conceptual data model
 - Choose an ontology language for your purpose
- Example: the HGT-DB about horizontal gene transfer (the same holds for the database behind ADOLENA)

Automatic Extraction of Ontologies

• Lina Lubyte/Sergio Tessaris's presentation, moved to the afternoon lab

ottom-up overview	Relational databases O O O O O O	Models in biology 000 00000000000000000	Thesauri	Summary	Bottom-up overview	A Relational databases	Models in biology ●○○ ○○○○○○○○○○○○○○	Thesauri	Sumi
	Manual map	ping to <i>DL-Lit</i>	$e_{\mathcal{A}}$			Ov	erview		
					• Pu	re and applied life sciend	ces use many diag	rams	
• Basic :	statistics:				• So	me diagram hand drawn	, but more and m	ore with soft	ware

- 38 classes
- 34 object properties of which 17 functional
- 55 data properties of which 47 functional
- 102 subclass axioms
- Subsequently used for Ontology-Based Data Access (more about that in the next block)

- Come with their own 'icon vocabulary' and many diagrams
- Exploit such informal but structured representation of information to develop automatically (a preliminary version of) a domain ontology
- Formalize the 'icon vocabulary' in a suitable logic language, choose a foundational ontology (taxonomy, relations), categorise the formalised icons accordingly, load each diagram into the ontology, verify with the domain expert

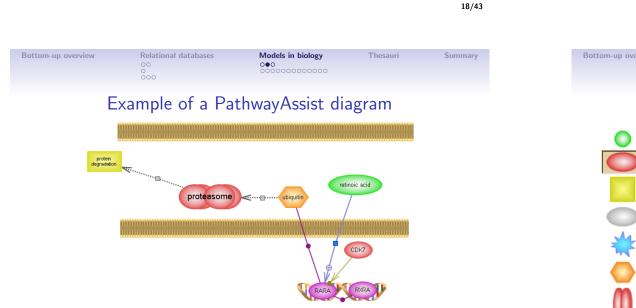
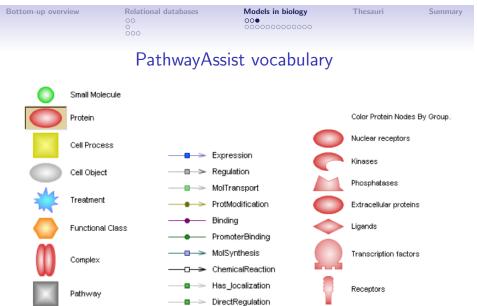
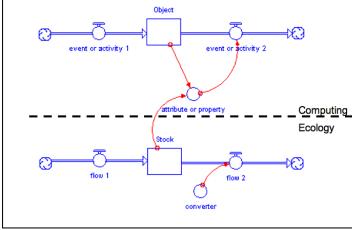
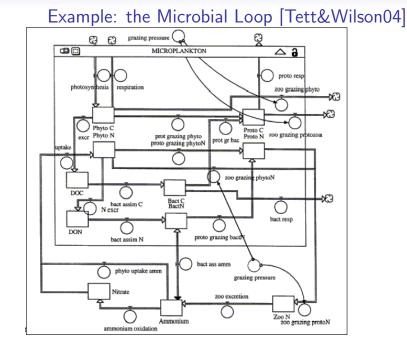



Figure: Node description: red: proteins, green: small molecules, orange: functional classes, yellow: cell processes, violet: nuclear receptors. Link description: grey dotted: regulation, violet solid: binding, yellow-green solid: protein modification, blue solid: expression.

Kindly provided by Kristina Hettne

Bottom-up	overview	Į

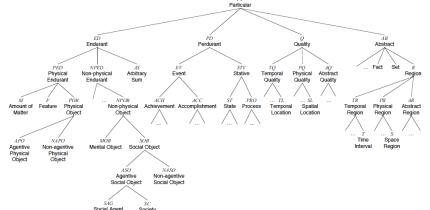

Summarv


Motivation

- Experiment in 2005 (Keet, 2005), but progress made in ecology (Madin et al, 2008; MTSR'09 proceedings)
- Extensive use of modelling in ecology, but not much shared (depending on sub-discipline)
- Models used with independent software tools (DB and other applications)
- 'Legacy code' (procedural), moving toward more OO, and ontologies
- Requirement for (re re-)analysis to upgrade legacy SW), develop new SW to meet increasing, complexities and rising demands.
- use the opportunity to create a more durable, yet computationally usable, shared, agreed upon representation of the knowledge about reality

25/43

Informal 'Translation'

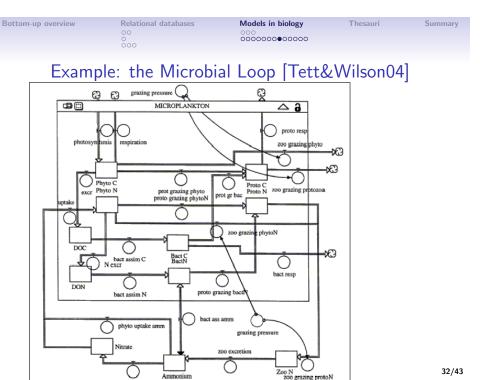

- A Stock correspond to a noun (particular or universal)
- Flow to verb
- Converter to attribute related to Flow or Stock
- Action Connector relates the former
- Object is candidate for an Endurant
- Event_or_activity for a method or *Perdurant*
- Converter maps to Attribute_or_property
- Action Connector candidate for *relationship* between any two of Flow, Stock and Converter

Bottom-up overview	Relational databases 00 00 000	Models in biology ○○○ ○○○○●○○○○○○○○○	Thesauri	Summary
--------------------	---	--	----------	---------

'Translation' w.r.t. DOLCE categories

tom-up overview	Relational databases 00 0 000	Models in bi ○○○ ○○○○○●○○○		sauri Summa
	DOLC	E categori	es	
	ED Endurant	PT Particular PD Perdurant	Q Quality	AB Abstract

- Basic mapping to DOLCE categories:
 - $\forall x ((Stock(x) \leftrightarrow Entity(x)) \rightarrow ED(x))$
 - $\forall x ((Flow(x) \leftrightarrow Entity(x)) \rightarrow PD(x))$
 - $\forall x ((Converter(x) \leftrightarrow Entity(x)) \rightarrow (Q(x) \lor ST(x)))$
 - $\forall x (ActionConnector(x, y) \rightarrow Relationship(x, y))$


29/43

Bott

Bottom-up overview	Relational databases 00 0000	Models in biology ○○ ○○○○○○○●○○○○○○	Thesauri	Summary

ML to Microbial Loop domain ontology

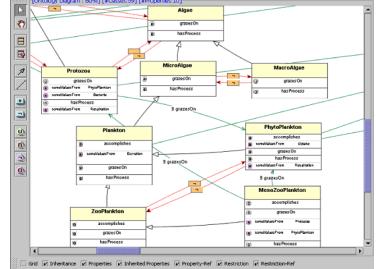
- Aim: to test translations with a real STELLA model
- ML's initial mapping to ontological categories contain 38 STELLA elements: 11 Stock/ED, 21 Flow/PD, 2 Converters/ST, 4 Action Connectors/Relationships
- The MicrobialLoop ontology has 59 classes and 10 properties
- Increase due to including DOLCE categories and implicit knowledge of ML that is explicit in MicrobialLoop

ammonium oxidation

Bottom-up overview	Relational databases	Models in biology	Thesauri	Summary
	00	000 000000000000000		

Section of more refined mapping to DOCLE categories


Phyto C	NAPO	Phyto C = phytoplankton organic carbon. Phytoplankton is an APO, but 'phyto C' is <i>part</i> of the APO: only the organic carbon of the phytoplankton, not the organism as an active agent as such
Phyto N	NAPO	Phyto N = phytoplankton nitrogen
DOC	NAPO	DOC = detrital organic carbon. Detritus is an ED with no unity, thus an amount of matter (M), but here, like with the organisms, there is focus on only a <i>part</i> of the NAPO
Nitrate	NAPO	Dissolved nitrate. Molecules are non agentive physical objects.
Flow		
Photosynthesis	PRO	To phytoplankton N
Respiration	PRO	From phytoplankton N
Prot gr bac	PRO	Protozoa that are grazing on the Bacterial C
Converter		
Grazing pressure	ST	Acts on a PRO affecting the process of grazing; 'grazing pressure' is there (might reach zero), hence a ST.
Action connector		
"1"	Yes	Acts on the mesozooplankton grazing on the protozoa, and acts on the mesozooplankton grazing on the phytoplankton: relation hasGrazingPressure


more mappings at http://www.meteck.org/supplDILS.html

33/43

Bottom-up overview	Relational databases	Models in biology	Thesauri	Summary
	00	000		
	õoo	000000000000000000000000000000000000000		
		C.1		
I he se	rialized version	of the ontolog	(section)	
- <owl:class p="" rdf:<=""></owl:class>	ID="Protozoa">	~		
	tWith rdf:resource="#Algae"			
	tWith rdf:resource="#Bacter	ia" />		
- <rdfs:subcla< p=""></rdfs:subcla<>				
- <owl:res< p=""></owl:res<>				
	onProperty rdf:resource="#ha			
	someValuesFrom rdf:resource	="#Respiration" />		
	striction>			
- <rdfs:subcla< td=""><td></td><td></td><td></td><td></td></rdfs:subcla<>				
- <owl:res< td=""><td></td><td></td><td></td><td></td></owl:res<>				
_				
	onProperty> wl:ObjectProperty rdf:about='	#grazec0n" />		
	:onProperty>	#grazeson />		
	someValuesFrom rdf:resource	="#PhytoPlankton" />		
	striction>			
<td></td> <td></td> <td></td> <td></td>				
- <rdfs:subcla< p=""></rdfs:subcla<>	issOf>			
- <owl:res< td=""><td>triction ></td><td></td><td></td><td></td></owl:res<>	triction >			
<owl:< td=""><td>someValuesFrom rdf:resource</td><td>="#Bacteria" /></td><td></td><td></td></owl:<>	someValuesFrom rdf:resource	="#Bacteria" />		
- <owl:< td=""><td>onProperty></td><td></td><td></td><td></td></owl:<>	onProperty>			
<0	wl:ObjectProperty rdf:about='	"#grazesOn" />		
<td>:onProperty></td> <td></td> <td></td> <td></td>	:onProperty>			
<td>striction ></td> <td></td> <td></td> <td></td>	striction >			
<td>assOf></td> <td></td> <td></td> <td></td>	assOf>			

```
<rdfs:subClassOf rdf:resource="#Microorganisms" /> </owl:Class>
```


Bottom-up overview	Relational databases 00 0 000	Models in biology ○○○ ○○○○○○○○○○○●○	Thesauri	Summary	
Discussion					

- Formalising ecological natural, functional and integrative concepts
 - aids comparison of scientific theories
 - makes the implicit explicit, and more expressive than other modelling practices, therefore useful:
 - points to ambiguous sections,
 - part of/extra tool for doing science,
 - importance ontology maintenance, comparisons
- Modular, backbone or all-encompassing ontology/ies
- With the mappings, a quicker bottom-up development of ecological ontologies

- Taxonomies insufficiently expressive compared to existing ecological modelling techniques
- Perspective of flow in ecological models cannot be represented adequately in a taxonomy
- More comprehensive semantics of formal ontologies
- Formalised mapping between STELLA and ontology elements facilitates bottom-up ontology development and has excellent potential for semi-automated ontology development
- STELLA as intermediate representation, widely used by ecologists and is translatable to a representation usable for ontologists

To summarize

Models in biology

000000000000000

Relational databases

Bottom-up overview

-

Relational databases

Models in biology

Thesauri Summar

Overview

- Thesauri galore in medicine, education, agriculture, ...
- Core notions of BT broader term, NT narrower term, and RT related term (and auxiliary ones UF/USE)
- E.g. the Educational Resources Information Center thesaurus: reading ability
 - BT ability
 - RT reading
 - RT perception
- E.g. AGROVOC of the FAO:
 - milk

37/43

40/43

Bottom-up overview

- NT cow milk
- NT milk fat
- How to go from this to an ontology?

Bottom-up overview	Relational databases 00 0 000	Models in biology 000 00000000000000	Thesauri	Summary
	Pro	oblems		

- Lexicalisation of a conceptualisation
- Low ontological precision
- BT/NT is not the same as *is_a*, RT can be any type of relation: overloaded with (ambiguous) subject domain semantics
- Those relationships are used inconsistently
- Lacks basic categories alike those in DOLCE and BFO (ED, PD, SDC, etc.)

	Bottom-up overview	Relational databases 00 00 000	Models in biology	Thesauri	Summary
--	--------------------	---	-------------------	----------	---------

A rules-as-you-go approach

- A possible re-engineering procedure:
 - Define the ontology structure (top-level hierarchy/backbone)
 - Fill in values from one or more legacy Knowledge Organisation System to the extent possible (such as: which object properties?)
 - Edit manually using an ontology editor:
 - make existing information more precise
 - add new information
 - automation of discovered patterns (rules-as-you-go)

see (Soergel et al, 2004)

Thesauri

Summary

A rules-as-you-go approach

- A possible re-engineering procedure:
 - Define the ontology structure (top-level hierarchy/backbone)
 - Fill in values from one or more legacy Knowledge Organisation System to the extent possible (such as: which object properties?)
 - Edit manually using an ontology editor:
 - make existing information more precise
 - add new information
 - automation of discovered patterns (rules-as-you-go); e.g.
 - observation: cow NT cow milk should become cow
 - <hasComponent> cow milk
 - pattern: animal <hasComponent> milk (or, more generally animal <hasComponent> body part)
 - derive automatically: goat NT goat milk should become goat <hasComponent> goat milk
 - other pattern examples, e.g., *plant <growsln> soil type* and *geographical entity <spatiallyIncludedIn> geographical entity*

see (Soergel et al, 2004)

42/43

Bottom-up overview

Relational databases

Data analysis Automatic Extraction of Ontologies Example: manual extraction

Models in biology

General idea Case study

Thesauri