Μ	ot	iva	ati	ioı		
0	\sim	0	$\sim c$	\sim	0	20

Toward isiZulu Natural Language Generation

C. Maria Keet¹

Department of Computer Science University of Cape Town, South Africa mkeet@cs.uct.ac.za

CS Colloquium @UCT, 12 June 2014

¹Joint work with Dr. Langa Khumalo, Linguistics program and Director of the University Language Planning and Development Office, University of KwaZulu-Natal

Motivation	isiZulu intro	isiZulu NLG	Discussion	Conclusions

Outline

- A few application scenarios
- NLG and knowledge management

2 isiZulu intro

isiZulu NLG

- Patterns and options
- Survey results
- Algorithms for selected constructs

4 Discussion

Motivation	isiZulu intro	isiZulu NLG	Discussion	Conclusions
		000000000000000000000000000000000000000		

Outline

Motivation

- A few application scenarios
- NLG and knowledge management

2 isiZulu intro

3 isiZulu NLG

- Patterns and options
- Survey results
- Algorithms for selected constructs

4 Discussion

5 Conclusions

Natural language interfaces with some NLG

- Many tools, webpages, etc. with some natural language component
- Querying of information in natural language (cf. a query language SQL, SPARQL)
- Business rules typically specified in a natural language
- etc.

isiZulu NLG Discussion

Conclusions

Example: iCal calendar entry with canned text

	my colloquium				
	location	None			
	all-day	0			
	from	12/06/2014 01:00 PM			
	to	12/06/2014 02:00 PM			
	repeat	None ‡			
	show as	Busy ‡			
	calendar	Work ‡			
	alarm	Message with Sound ‡ 네) Basso 🛊			
		1 hours before ‡			
	alarm	None ‡			
×	invitees	Add Invitees			

isiZulu intro

isiZulu NLG Discussion

Conclusions

Example: Saadiq Moolla's mobile healthcare app

Chest Pain

Have you had any recent pain in your chest? - Uke waba nobuhlungu esifubeni maduzane?

Does the pain radiate to your jaw, neck or arm? - Engabe ubuhlungu bakho bujikeleza emihlathini, emqaleni noma nasezingalweni?

Does anything precipitate or relieve the pain? - Ingabe ikhona into eyenza ubuhlungu buqhubeke noma eyehlisa ubuhlungu?

Dyspnoea

Are you breathless at any time? - Uke uphelelwe umoya kwezinye izikhathi?

Home » History » Cardiovascular History

Chest Pain

Have you had any recent pain in your chest? - Ingaba kutshanje ukhe weva iintlungu esifubeni?

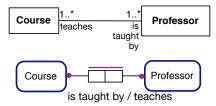
Does the pain radiate to your jaw, neck or arm? - Ingaba iintlungu zinwenwela emhlathini, entanyeni okanye engalweni?

Does anything precipitate or relieve the pain? - Ingaba ikhona into ezivuselelayo okanye ezidambisayo iintlungu?

Dyspnoea

isiZulu NLG Discussion

Conclusions


Example: Query formulation with Quelo [Franconi et al.(2010)]

I am looking for	I am looking for a car dealer. It should sell a new car. The body style of the new car should							
be an off-road ca	The new car should run on	a diesel. (Its model) shou	ld be a Range Rover.					
I am looking for a ca	D.	_						
	∇ it should be equipped with an equipment	I vith an engine						
	t should be located in a country		▽ with an electric engine					
Scramble Clear	t should be produced by something	▶ ∇ with a transmission system ▶						
	it should be sold by a car dealer		v with a natural gas engine					
	V it should produce something	•	with a propane engine					
		1						
I am looking for a ca	r. It should run on a diesel.							
	v it should be equipped with an equipme	nt ▶ ▽ with an engine	▶					
	It should be located in a country	vith an optional feature	•					
Scramble Clear E	x€ ▽ it should be produced by something	 with a transmission system 	 Ready. 					

Pictures from: Quelo @ The IESD Challenge 2012 Demo at: http://krdbapp.inf.unibz.it:8080/quelo/

Conclusions

Example: Business rules and conceptual data models

Each Course is taught by at least one Professor Each Professor teaches at least one Course

NLG, principal approaches

- Canned text
- Templates
 - Notably for English [Fuchs et al.(2010), Schwitter et al.(2008), Third et al.(2011), Curland and Halpin(2007)],
 - but also other languages [Jarrar et al.(2006)]
- Grammar engines, such as [Kuhn(2013)], Grammatical Framework (http://www.grammaticalframework.org/)
- \Rightarrow Controlled Natural Language

NLG, principal approaches

- Canned text
- Templates
 - Notably for English [Fuchs et al.(2010), Schwitter et al.(2008), Third et al.(2011), Curland and Halpin(2007)],
 - but also other languages [Jarrar et al.(2006)]
- Grammar engines, such as [Kuhn(2013)], Grammatical Framework (http://www.grammaticalframework.org/)
- ⇒ Controlled Natural Language

 Motivation
 isiZulu intro
 isiZulu NLG
 Discussion
 Conclusions

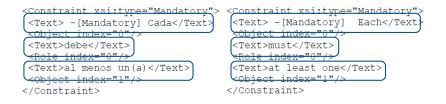
 Business rules/conceptual data models and logic

 reconstruction

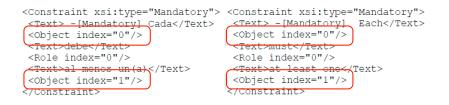
BR: Each Course is taught by at least one Professor FOL: $\forall x \text{ (Course}(x) \rightarrow \exists y \text{ (is_taught_by}(x, y) \land \text{Professor}(y)))$ DL: Course $\sqsubseteq \exists \text{ is_taught_by.Professor}$

isiZulu intro

isiZulu NLG Discussion

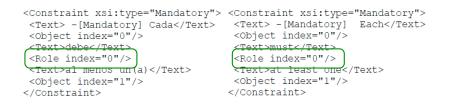

Conclusions

Example of templates


```
<Constraint xsi:type="Mandatory"> <Constraint xsi:type="Mandatory">
<Text> -[Mandatory] Cada</Text>
<Description (Constraint)
</pre>
```

isiZulu NLG Discussion

Example of templates



Example of templates

isiZulu NLG Discussion

Example of templates

isiZulu NLG Discussion

NL Grammars, illustration

. . .

. . .

- $\begin{array}{rcccc} Sentence & \longrightarrow & NounPhrase \mid VerbPhrase \\ NounPhrase & \longrightarrow & Adjective \mid NounPhrase \\ NounPhrase & \longrightarrow & Noun \end{array}$
 - $egin{array}{ccc} \textit{Noun} & \longrightarrow & \textit{car} \mid \textit{train} \ \textit{Adjective} & \longrightarrow & \textit{big} \mid \textit{broken} \end{array}$

(and complexity of the grammar)

Question

• Can the template-based approach be used also for isiZulu NLG?

- If so, create those templates
- If not, start with basics for a grammar engine
- Use a practically useful language to benefit both ICT and linguists and, possibly, some subject domain (e.g., medicine, NRS [Alberts et al.(2012)])

• Details in

[Keet and Khumalo(2014b), Keet and Khumalo(2014a)]

Question

- Can the template-based approach be used also for isiZulu NLG?
 - If so, create those templates
 - If not, start with basics for a grammar engine
- Use a practically useful language to benefit both ICT and linguists and, possibly, some subject domain (e.g., medicine, NRS [Alberts et al.(2012)])
- Details in
 - [Keet and Khumalo(2014b), Keet and Khumalo(2014a)]

Question

- Can the template-based approach be used also for isiZulu NLG?
 - If so, create those templates
 - If not, start with basics for a grammar engine
- Use a practically useful language to benefit both ICT and linguists and, possibly, some subject domain (e.g., medicine, NRS [Alberts et al.(2012)])

Details in

[Keet and Khumalo(2014b), Keet and Khumalo(2014a)]

Motivation	isiZulu intro	isiZulu NLG	Discussion	Conclusions
		000000000000000000000000000000000000000		

Outline

Motivation

- A few application scenarios
- NLG and knowledge management

2 isiZulu intro

isiZulu NLG

- Patterns and options
- Survey results
- Algorithms for selected constructs

4 Discussion

5 Conclusions

Motivation	isiZulu intro	isiZulu NLG	Discussion	Conclusions
0000000000		000000000000000000000000000000000000000	00000000	
A four for	tures of isi7ulu			

- Most populous language in SA, first (home) language of $\pm 23\%$ (≥ 10 million)
- Member of the Bantu language group, spoken by some 300 million people
- Bantu languages have characteristically agglutinating morphology
- System of noun classes, controls the concordance of all words in a sentence

Abafana abancane bazozithenga izincwadi ezinkulu **aba**-fana **aba**-ncane **ba**- zo- **zi**- thenga **izi**-ncwadi e-**zi**-nkulu **2**.boy **2**.small **2.SUBJ**-FUT-**10.OBJ**-buy **10**.book REL-**10**.big 'The little boys will buy the big books'

isiZulu intro

isiZulu NLG Discussion

Conclusions

NC	AU	PRE	Stem (ex- ample)	Meaning	Example	
1	u-	m(u)-	-fana	humans and other	umfana	boy
2	a-	ba-	-fana	animates	abafana	boys
1a	u-	-	-baba	kinship terms and proper	ubaba	father
2a	0-	-	-baba	names	obaba	fathers
3a	u-	-	-shizi	nonhuman	ushizi	cheese
(2a)	0-	-	-shizi		oshizi	cheeses
3	u-	m(u)-	-fula	trees, plants, non-paired	umfula	river
4	i-	mi-	-fula	body parts	imifula	rivers
5	i-	(li)-	-gama	fruits, paired body parts,	igama	name
6	a-	ma-	-gama	and natural phenomena	amagama	names
7	i-	si-	-hlalo	inanimates and manner/	isihlalo	chair
8	i-	zi-	-hlalo	style	izihlalo	chairs
9a	i-	-	-rabha	nonhuman	irabha	rubber
(6)	a-	ma-	-rabha		amarabha	rubbers
9	i(n)-	-	-ja	animals	inja	dog
10	i-	zi(n)-	-ja		izinja	dogs
11	u-	(lu)-	-thi	inanimates and long thin	uthi	stick
(10)	i-	zi(n)-	-thi	objects	izinthi	sticks
14	u-	bu-	-hle	abstract nouns	ubuhle	beauty
15	u-	ku-	-cula	infinitives	ukucula	to sing
17		ku-		locatives, remote/ general		locative

Outline

Motivation

- A few application scenarios
- NLG and knowledge management

2 isiZulu intro

isiZulu NLG

- Patterns and options
- Survey results
- Algorithms for selected constructs

4 Discussion

5 Conclusions

Logic foundation for isiZulu NLG

- Roughly OWL 2 EL
- OWL 2 EL is a W3C-standardised profile of OWL 2
- Tools, ontologies in OWL 2 (notably SNOMED CT)
- \bullet On the 'roughly': minus transitivity, but with negation, amounting to \mathcal{ALC}
 - of that, we have patterns for universal and existential quantification, subsumption, negation (disjointness), and conjunction
 - union not yet covered explicitly, but note $C \sqcup D \equiv \neg (\neg C \sqcap \neg D)$
 - more detail on the languages: see the Description Logics Handbook [Baader et al. (2008)] and OWL 2 Standard

Logic foundation for isiZulu NLG

- Roughly OWL 2 EL
- OWL 2 EL is a W3C-standardised profile of OWL 2
- Tools, ontologies in OWL 2 (notably SNOMED CT)
- \bullet On the 'roughly': minus transitivity, but with negation, amounting to \mathcal{ALC}
 - of that, we have patterns for universal and existential quantification, subsumption, negation (disjointness), and conjunction
 - union not yet covered explicitly, but note $C \sqcup D \equiv \neg (\neg C \sqcap \neg D)$
 - more detail on the languages: see the Description Logics Handbook [Baader et al.(2008)] and OWL 2 Standard

- Concepts denoting entity types/classes/unary predicates/universals, including top ⊤ and bottom ⊥;
- *Roles* denoting relationships/associations/n-ary predicates/properties;
- Constructors: and □, or ⊔, and not ¬; quantifications forall ∀ and exists ∃
- Complex concepts using constructors: Let C and D be concept names, R a role name, then
 - $\neg C$, $C \sqcap D$, and $C \sqcup D$ are concepts, and
 - $\forall R.C$ and $\exists R.C$ are concepts
- Individuals

Motivation	isiZulu intro	isiZulu NLG	Discussion	Conclusions
${\cal ALC}$ seman	tics			

- domain of interpretation, and an interpretation, where:
 - Domain Δ is a non-empty set of objects
 - Interpretation: ${}^{\mathcal{I}}$ is the interpretation function, domain $\Delta^{\mathcal{I}}$
 - $\cdot^{\mathcal{I}}$ maps every concept name A to a subset $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$
 - $\cdot^{\mathcal{I}}$ maps every role name R to a subset $R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$
 - $\cdot^{\mathcal{I}}$ maps every individual name *a* to elements of $\Delta^{\mathcal{I}}$: $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$

• Note:
$$\top^{\mathcal{I}} = \Delta^{\mathcal{I}}$$
 and $\perp^{\mathcal{I}} = \emptyset$

•
$$(\neg C)^{\mathcal{I}} = \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$$

- $(C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}}$
- $(C \sqcup D)^{\mathcal{I}} = C^{\mathcal{I}} \cup D^{\mathcal{I}}$
- $(\forall R.C)^{\mathcal{I}} = \{x \mid \forall y.R^{\mathcal{I}}(x,y) \to C^{\mathcal{I}}(y)\}$
- $(\exists R.C)^{\mathcal{I}} = \{x \mid \exists y.R^{\mathcal{I}}(x,y) \land C^{\mathcal{I}}(y)\}$

isiZulu NLG Discussion

A few constructors, their typical verbalization in English, and the basic options in isiZulu

DL sym-	Sample verbalization	Sample verbalization in isiZulu				
bol	English	(see text for additional rules)				
	is a	Depends on what is on the rhs of \sqsubseteq and desideratum:				
		A) semantic distinction				
		i) yi/ongu/uyi/ngu	(living thing)			
		ii) iyi	(non-living thing)			
		 B) syntactic distinction 				
			cing with a, o, or u)			
			commencing with i)			
Π	and	Depends on the use of the □:				
		i) na/ne/no	(list of things)			
		ii) 1) futhi	(connective)			
		2) kanye	(connective)			
7	not	angi/akusiso/akusona/akubona/akulona/asibona/ akalona/akuyona				
Э	1) some	Depends on position in axiom:				
	there exists	I. quantified over class, depends on meaning of class:				
	at least one	i) kuno	(living thing)			
		ii) kune	(non-living thing)			
		II. includes relation (preposition issue omitted):				
		1) [concords]dwa				
		 noma [copulative + concord]phi 				
		3) thize				
\forall	1) for all	Depends on what it is quantified over:				
	2) each	A) semantic distinction				
		i) wonke/bonke/sonke/zonke	(living thing)			
		ii) onke/konke/lonke/yonke	(non-living thing)			
		B) another semantic distinction				
		i) use noun class 🔹 🔍 🖬 🕨 📲	🕨 🔸 (see Table 8) 🖉			

28 / 80

Universal Quantification

- Consider here only the universal quantification at the start of the concept inclusion axiom (nominal head)
- 'all'/'each' uses -onke, prefixed with the oral prefix of the noun class of that first noun (OWL class/DL concept) on lhs of ⊑

isiZulu NLG Discussion

NC	QC (all)		NEG SC	PRON	RC	QCdwa	EC
	$QC_{oral+onke}$	$\mathbf{QC}_{\mathbf{nke}}$				uu	
1	u -onke \rightarrow wonke	wo-	aka-	yena	0-	ye-	mu-
2	$ba-onke \rightarrow bonke$	bo-	aba-	bona	aba-	bo-	ba-
1a	u -onke \rightarrow wonke	wo-	aka-	yena	0-	ye-	mu-
2a	$ba-onke \rightarrow bonke$	bo-	aba-	bona	aba-	bo-	ba-
3a	u -onke \rightarrow wonke	wo-	aka-	wona	0-	ye-	mu-
(2a)	$ba-onke \rightarrow bonke$	bo-	aba-	bona	aba-	bo-	ba-
3	u -onke \rightarrow wonke	wo-	awu-	wona	0-	wo-	mu-
4	i -onke \rightarrow yonke	yo-	ayi-	yona	e-	yo-	mi-
5	$li-onke \rightarrow lonke$	lo-	ali-	lona	eli-	lo-	li-
6	a -onke \rightarrow onke	0-	awa-	wona	a-	wo-	ma-
7	$si-onke \rightarrow sonke$	SO-	asi-	sona	esi-	SO-	si-
8	zi -onke $\rightarrow zonke$	zo-	azi-	zona	ezi	zo-	zi-
9a	i -onke \rightarrow yonke	yo-	ayi-	yona	e-	yo-	yi-
(6)	a-onke \rightarrow onke	0-	awa-	wona	a-	wo-	ma-
9	i -onke \rightarrow yonke	yo-	ayi-	yona	e-	yo-	yi-
10	zi -onke $\rightarrow zonke$	zo-	azi-	zona	ezi-	zo-	zi-
11	$lu-onke \rightarrow lonke$	lo-	alu-	lona	olu-	lo-	lu-
(10)	zi -onke $\rightarrow zonke$	zo-	azi-	zona	ezi-	zo-	zi-
14	$ba-onke \rightarrow bonke$	bo-	abu-	bona	obu-	bo-	bu-
15	ku -onke \rightarrow konke	zo-	aku-	khona	oku-	zo-	ku-

isiZulu NLG Discussion

NC	QC (all)		NEG SC	PRON	RC	QCdwa	EC
	$QC_{oral+onke}$	$\mathbf{QC}_{\mathbf{nke}}$				- uwu	
1	u -onke \rightarrow wonke	wo-	aka-	yena	0-	ye-	mu-
2	$ba-onke \rightarrow bonke$	bo-	aba-	bona	aba-	bo-	ba-
1a	u -onke \rightarrow wonke	wo-	aka-	yena	0-	ye-	mu-
$_{2a}$	$ba-onke \rightarrow bonke$	bo-	aba-	bona	aba-	bo-	ba-
3a	u -onke \rightarrow wonke	wo-	aka-	wona	0-	ye-	mu-
(2a)	$ba-onke \rightarrow bonke$	bo-	aba-	bona	aba-	bo-	ba-
3	u -onke \rightarrow wonke	wo-	awu-	wona	0-	wo-	mu-
4	i -onke \rightarrow yonke	yo-	ayi-	yona	e-	yo-	mi-
5	$li-onke \rightarrow lonke$	lo-	ali-	lona	eli-	lo-	li-
6	a -onke \rightarrow onke	o-	awa-	wona	a-	wo-	ma-
7	$si-onke \rightarrow sonke$	SO-	asi-	sona	esi-	SO-	si-
8	$ ext{zi-onke} ightarrow ext{zonke}$	zo-	azi-	zona	ezi	zo-	zi-
9a	i -onke \rightarrow yonke	yo-	ayi-	yona	e-	yo-	yi-
(6)	a-onke \rightarrow onke	0-	awa-	wona	a-	wo-	ma-
9	i -onke \rightarrow yonke	yo-	ayi-	yona	e-	yo-	yi-
10	$ ext{zi-onke} ightarrow ext{zonke}$	zo-	azi-	zona	ezi-	zo-	zi-
11	$lu-onke \rightarrow lonke$	lo-	alu-	lona	olu-	lo-	lu-
(10)	zi -onke $\rightarrow zonke$	zo-	azi-	zona	ezi-	zo-	zi-
14	ba -onke $\rightarrow bonke$	bo-	abu-	bona	obu-	bo-	bu-
15	ku -onke \rightarrow konke	zo-	aku-	khona	oku-	zo-	ku-

isiZulu NLG Discussion

NC		QC (all)		NEG SC	PRON	RC	QCdwa	EC
	$\mathbf{QC}_{\mathbf{oral}}$	-onke	QC_{nke}				- uwa	
1	u-onke –	wonke	wo-	aka-	yena	0-	ye-	mu-
2	ba-onke	\rightarrow bonke	bo-	aba-	bona	aba-	bo-	ba-
1a	u-onke –	wonke	wo-	aka-	yena	0-	ye-	mu-
2a	ba-onke	\rightarrow bonke	bo-	aba-	bona	aba-	bo-	ba-
3a	u-onke –	wonke	wo-	aka-	wona	0-	ye-	mu-
(2a)	ba-onke	→ bonke	bo-	aba-	bona	aba-	bo-	ba-
3	u-onke –	wonke	wo-	awu-	wona	0-	wo-	mu-
4	$\text{i-onke} \rightarrow$	yonke	yo-	ayi-	yona	e-	yo-	mi-
5	li-onke –	lonke	lo-	ali-	lona	eli-	lo-	li-
6	a-onke —	onke	0-	awa-	wona	a-	wo-	ma-
7	si-onke –	> sonke	SO-	asi-	sona	esi-	SO-	si-
8	zi-onke –	→ zonke	zo-	azi-	zona	ezi	zo-	zi-
9a	i-onke \rightarrow	yonke	yo-	ayi-	yona	e-	yo-	yi-
(6)	a-onke —	onke	0-	awa-	wona	a-	wo-	ma-
9	i-onke \rightarrow	yonke	yo-	ayi-	yona	e-	yo-	yi-
10	zi-onke –	Jonke	zo-	azi-	zona	ezi-	zo-	zi-
11	lu-onke -	Ionke	lo-	alu-	lona	olu-	lo-	lu-
(10)	zi-onke –	→ zonke	zo-	azi-	zona	ezi-	zo-	zi-
14	ba-onke	\rightarrow bonke	bo-	abu-	bona	obu-	bo-	bu-
15	ku-onke	\rightarrow konke	zo-	aku-	khona	oku-	zo-	ku-

Motivation	isiZulu intro	isiZulu NLG ೦೦೦●೦೦೦೦೦೦೦೦೦	Discussion	Conclusions			
Subsumption							

- Two different ways of carving up the nouns to determine which rules apply: semantic and syntactic
- Need to choose between
 - singular and plural
 - with or without the universal quantification voiced
 - generic or determinate

(S1) MedicinalHerb \sqsubseteq Plant

ikhambi ngumuthi('medicinal herb is a plant')amakhambi yimithi('medicinal herbs are plants')wonke amakhambi ngumuthi('all medicinal herbs are a plant')

- (S2) Giraffes ⊑ Animals izindlulamithi yizilwane ('giraffes are animals'; generic)
 (S2) Callarbana ⊑ Dhana
- (S3) Cellphone ⊑ Phone Umakhalekhukhwini <u>uyi</u>foni ('cellp

('cellphone is a phone'; determ.)

▲ロト ▲圖ト ▲ヨト ▲ヨト 三ヨ - のへで

isiZulu intro

isiZulu NLG Disc

Discussion

Conclusions

Possible subsumption patterns

- a. N_1 <copulative ng/y depending on first letter of $N_2 > N_2$.
- b. <plural of N_1 > <copulative ng/y depending on first letter of plural of N_2 ><plural of N_2 >.
- c. <All-concord for NC_x>onke <plural of N_1 , being of NC_x> <copulative ng/y depending on first letter of $N_2 > N_2$.

Subsumption: adding negation

- Need to choose between
 - singular and plural, and with or without the universal quantification voiced
- Copulative is omitted
- Combines the negative subject concord (NEG SC) of the noun class of the first noun (*aku*-) with the pronomial (PRON) of the noun class of second noun (*-yona*)

(SN1) Cup $\sqsubseteq \neg$ Glass

indebe akuyona ingilazi

('cup <u>not a</u> glass')

zonke izindebe aziyona ingilazi

('all cups not a glass')

isiZulu NLG Discussion

NC	QC (all)	NEG SC	PRON	RC	QCdwa	EC	
	$QC_{oral+onke}$	$ \mathbf{QC_{nke}} $					
1	u -onke \rightarrow wonke	wo-	aka-	yena	0-	ye-	mu-
2	$ba-onke \rightarrow bonke$	bo-	aba-	bona	aba-	bo-	ba-
1a	u -onke \rightarrow wonke	wo-	aka-	yena	0-	ye-	mu-
2a	$ba-onke \rightarrow bonke$	bo-	aba-	bona	aba-	bo-	ba-
3a	u -onke \rightarrow wonke	wo-	aka-	wona	0-	ye-	mu-
(2a)	$ba-onke \rightarrow bonke$	bo-	aba-	bona	aba-	bo-	ba-
3	u -onke \rightarrow wonke	wo-	awu-	wona	0-	wo-	mu-
4	i -onke \rightarrow yonke	yo-	ayi-	yona	e-	yo-	mi-
5	$li-onke \rightarrow lonke$	lo-	ali-	lona	eli-	lo-	li-
6	a-onke \rightarrow onke	0-	awa-	wona	a-	wo-	ma-
7	$si-onke \rightarrow sonke$	SO-	asi-	sona	esi-	SO-	si-
8	zi -onke $\rightarrow zonke$	zo-	azi-	zona	ezi	zo-	zi-
9a	i -onke \rightarrow yonke	yo-	ayi-	yona	e-	yo-	yi-
(6)	a-onke \rightarrow onke	0-	awa-	wona	a-	wo-	ma-
9	i -onke \rightarrow yonke	yo-	ayi-	yona	e-	yo-	yi-
10	zi -onke $\rightarrow zonke$	zo-	azi-	zona	ezi-	zo-	zi-
11	$lu-onke \rightarrow lonke$	lo-	alu-	lona	olu-	lo-	lu-
(10)	zi -onke $\rightarrow zonke$	zo-	azi-	zona	ezi-	zo-	zi-
14	$ba-onke \rightarrow bonke$	bo-	abu-	bona	obu-	bo-	bu-
15	ku -onke \rightarrow konke	zo-	aku-	khona	oku-	zo-	ku-

isiZulu NLG Discussion

NC	QC (all)		NEG SC	PRON	RC	QCdwa	EC
	$QC_{oral+onke}$	$ \mathbf{QC_{nke}} $				- uwu	
1	u -onke \rightarrow wonke	wo-	aka-	yena	0-	ye-	mu-
2	$ba-onke \rightarrow bonke$	bo-	aba-	bona	aba-	bo-	ba-
1a	u -onke \rightarrow wonke	wo-	aka-	yena	0-	ye-	mu-
2a	$ba-onke \rightarrow bonke$	bo-	aba-	bona	aba-	bo-	ba-
3a	u -onke \rightarrow wonke	wo-	aka-	wona	0-	ye-	mu-
(2a)	$ba-onke \rightarrow bonke$	bo-	aba-	bona	aba-	bo-	ba-
3	$u\text{-onke} \rightarrow wonke$	wo-	awu-	wona	0-	wo-	mu-
4	i -onke \rightarrow yonke	yo-	ayi-	yona	e-	yo-	mi-
5	$li-onke \rightarrow lonke$	lo-	ali-	lona	eli-	lo-	li-
6	a-onke \rightarrow onke	o-	awa-	wona	a-	wo-	ma-
7	$si-onke \rightarrow sonke$	SO-	asi-	sona	esi-	SO-	si-
8	$ ext{zi-onke} ightarrow ext{zonke}$	zo-	azi-	zona	ezi	zo-	zi-
9a	i -onke \rightarrow yonke	yo-	ayi-	yona	e-	yo-	yi-
(6)	a-onke \rightarrow onke	0-	awa-	wona	a-	wo-	ma-
9	i -onke \rightarrow yonke	yo-	ayi-	yona	e-	yo-	yi-
10	zi -onke $\rightarrow zonke$	zo-	azi-	zona	ezi-	zo-	zi-
11	$lu-onke \rightarrow lonke$	lo-	alu-	lona	olu-	lo-	lu-
(10)	zi -onke $\rightarrow zonke$	zo-	azi-	zona	ezi-	zo-	zi-
14	$ba-onke \rightarrow bonke$	bo-	abu-	bona	obu-	bo-	bu-
15	ku -onke \rightarrow konke	zo-	aku-	khona	oku-	zo-	ku-

◆□>
◆□>
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

37 / 80

isiZulu NLG Discussion

NC	QC (all)		NEG SC	PRON	RC	QCdwa	EC
	$QC_{oral+onke}$	$ \mathbf{QC_{nke}} $					
1	u -onke \rightarrow wonke	wo-	aka-	yena	D-	ye-	mu-
2	$\text{ba-onke} \rightarrow \text{bonke}$	bo-	aba-	bona	aba-	bo-	ba-
1a	u -onke \rightarrow wonke	wo-	aka-	yena	D -	ye-	mu-
2a	$ba-onke \rightarrow bonke$	bo-	aba-	bona	aba-	bo-	ba-
3a	u -onke \rightarrow wonke	wo-	aka-	wona	D -	ye-	mu-
(2a)	$ba-onke \rightarrow bonke$	bo-	aba-	bona	aba-	bo-	ba-
3	$u\text{-onke} \rightarrow wonke$	wo-	awu-	wona	D -	wo-	mu-
4	$\text{i-onke} \rightarrow \text{yonke}$	yo-	ayi-	yona	e-	yo-	mi-
5	$li-onke \rightarrow lonke$	lo-	ali-	lona	eli-	lo-	li-
6	a-onke \rightarrow onke	0-	awa-	wona	a-	wo-	ma-
7	$si-onke \rightarrow sonke$	SO-	asi-	sona	esi-	SO-	si-
8	$ ext{zi-onke} ightarrow ext{zonke}$	zo-	azi-	zona	ezi	zo-	zi-
9a	i -onke \rightarrow yonke	yo-	ayi-	yona	e-	yo-	yi-
(6)	a-onke \rightarrow onke	0-	awa-	wona	a-	wo-	ma-
9	i -onke \rightarrow yonke	yo-	ayi-	yona	e-	yo-	yi-
10	zi -onke $\rightarrow zonke$	zo-	azi-	zona	ezi-	zo-	zi-
11	$lu-onke \rightarrow lonke$	lo-	alu-	lona	olu-	lo-	lu-
(10)	zi -onke $\rightarrow zonke$	zo-	azi-	zona	ezi-	zo-	zi-
14	$ba-onke \rightarrow bonke$	bo-	abu-	bona	obu-	bo-	bu-
15	ku -onke \rightarrow konke	zo-	aku-	khona	oku-	zo-	ku-

◆□>
◆□>
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

38 / 80

Possible negation (disjointness) patterns

- a. $<N_1$ of NC_x> <NEG SC of NC_x><PRON of NC_y> $<N_2$ of NC_y>.
- b. <All-concord for NC_x>onke <plural N_1 , being of NC_x> <NEG SC of NC_x><PRON of NC_y> < N_2 with NC_y>.

Motivation	isiZulu intro	isiZulu NLG ○○○○○○○●○○○○○○	Discussion	Conclusions
Conjunction				

- Conjunction as enumeration uses na
- Changes into (a + i =) *ne* or (a + u =) *no*, depending on the first letter of the second noun
- Prefixed to the second noun that drops its first letter
- Conjunction as connective of clauses: kanye or futhi

(C1)	$\texttt{Milk} \sqcap \texttt{Butter}$	
	Ubisi <u>ne</u> bhotela	(Ubisi + na + Ibhotela)
(C2)	Butter \sqcap Milk	
	lbhotela <u>no</u> bisi	(Ibhotela + na + Ubisi)
(C3)	$\dots \exists \mathtt{has_filling.Cream} \sqcap \exists \mathtt{has_Icin}$	ng.Lemon_flavour

...kune zigcwalisa ukhilimu kanye nezinye uqweqwe olunambitheka_ulamula...

...kune zigcwalisa ukhilimu <u>futhi</u> nezinye uqweqwe olunambitheka_ulamula...

Existential Quantification

- Different context: Option I in Table 1 for type (E0) Option II to axioms of type (E1)
 - (E0) Ezulwini kune zingilosi
 - (E1) Giraffe $\sqsubseteq \exists eats. Twig$

yonke indlulamithi idla ihlamvana <u>elilodwa</u> zonke izindlulamithi zidla ihlamvana <u>elilodwa</u> yonke indlulamithi idla <u>noma yiliphi</u> ihlamvana zonke izindlulamithi zidla <u>noma yiliphi</u> ihlamvana yonke indlulamithi idla ihlamvana<u>thize</u> ('in heaven there exist angels')

- ('each giraffe eats at least one twig')
 - ('all giraffes eat at least one twig')
 - ('each giraffe eats <u>some</u> twig')
 - ('all giraffes eat some twig')
 - ('each giraffe eats some twig')

isiZulu intro

isiZulu NLG Discussion

Conclusions

Beakdown-examples

noun	NC	RC	QC	QSuffix	copulative	EP	ESuffix
ihlamvana ('twig')	class 5	eli-	- <i>lo</i> -	-dwa			
<i>isifundo</i> ('module')	class 7	esi-	-50-	-dwa			
<i>ushizi</i> ('cheese')	class 3a	0-	-ye-	-dwa			
<i>ihlamvana</i> ('twig')	class 5				yi-	- <i>li</i> -	-phi
<i>isifundo</i> ('module')	class 7				yi-	-si-	-phi
ushizi ('cheese')	class 3a				ngu-	-mu-	-phi

isiZulu NLG Discussion

NC	QC (all)		NEG SC	PRON	RC	QCdwa	EC
	$QC_{oral+onke}$	$ \mathbf{QC_{nke}} $					
1	$u\text{-onke} \rightarrow wonke$	wo-	aka-	yena	0-	ye-	mu-
2	$ba-onke \rightarrow bonke$	bo-	aba-	bona	aba-	bo-	ba-
1a	u -onke \rightarrow wonke	wo-	aka-	yena	0-	ye-	mu-
2a	$ba-onke \rightarrow bonke$	bo-	aba-	bona	aba-	bo-	ba-
3a	u -onke \rightarrow wonke	wo-	aka-	wona	0-	ye-	mu-
(2a)	$ba-onke \rightarrow bonke$	bo-	aba-	bona	aba-	bo-	ba-
3	$u\text{-onke} \rightarrow wonke$	wo-	awu-	wona	0-	wo-	mu-
4	i -onke \rightarrow yonke	yo-	ayi-	yona	e-	yo-	mi-
5	$li-onke \rightarrow lonke$	lo-	ali-	lona	eli-	lo-	li-
6	$\text{a-onke} \to \text{onke}$	o-	awa-	wona	a-	wo-	ma-
7	$si-onke \rightarrow sonke$	SO-	asi-	sona	esi-	SO-	si-
8	$ ext{zi-onke} ightarrow ext{zonke}$	zo-	azi-	zona	ezi	zo-	zi-
9a	i -onke \rightarrow yonke	yo-	ayi-	yona	e-	yo-	yi-
(6)	a -onke \rightarrow onke	0-	awa-	wona	a-	wo-	ma-
9	i -onke \rightarrow yonke	yo-	ayi-	yona	e-	yo-	yi-
10	zi -onke $\rightarrow zonke$	zo-	azi-	zona	ezi-	zo-	zi-
11	$lu-onke \rightarrow lonke$	lo-	alu-	lona	olu-	lo-	lu-
(10)	zi -onke $\rightarrow zonke$	zo-	azi-	zona	ezi-	zo-	zi-
14	$ba-onke \rightarrow bonke$	bo-	abu-	bona	obu-	bo-	bu-
15	ku -onke \rightarrow konke	zo-	aku-	khona	oku-	zo-	ku-

◆□>
◆□>
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

isiZulu NLG Discussion

NC	QC (all)		NEG SC	PRON	RC	QCdwa	EC
	$QC_{oral+onke}$	$\mathbf{QC_{nke}}$					
1	u -onke \rightarrow wonke	wo-	aka-	yena	0-	ye-	mu-
2	$ba-onke \rightarrow bonke$	bo-	aba-	bona	aba-	bo-	ba-
1a	u -onke \rightarrow wonke	wo-	aka-	yena	0-	ye-	mu-
2a	$ba-onke \rightarrow bonke$	bo-	aba-	bona	aba-	bo-	ba-
3a	u -onke \rightarrow wonke	wo-	aka-	wona	0-	ye-	mu-
(2a)	$ba-onke \rightarrow bonke$	bo-	aba-	bona	aba-	bo-	ba-
3	u -onke \rightarrow wonke	wo-	awu-	wona	0-	wo-	mu-
4	i -onke \rightarrow yonke	yo-	ayi-	yona	e-	yo-	mi-
5	$li-onke \rightarrow lonke$	lo-	ali-	lona	eli-	lo-	li-
6	a-onke \rightarrow onke	0-	awa-	wona	a-	wo-	ma-
7	$si-onke \rightarrow sonke$	SO-	asi-	sona	esi-	SO-	si-
8	zi -onke $\rightarrow zonke$	zo-	azi-	zona	ezi	zo-	zi-
9a	i -onke \rightarrow yonke	yo-	ayi-	yona	e-	yo-	yi-
(6)	a-onke \rightarrow onke	0-	awa-	wona	a-	wo-	ma-
9	i -onke \rightarrow yonke	yo-	ayi-	yona	e-	yo-	yi-
10	zi -onke $\rightarrow zonke$	zo-	azi-	zona	ezi-	zo-	zi-
11	$lu-onke \rightarrow lonke$	lo-	alu-	lona	olu-	lo-	lu-
(10)	zi -onke $\rightarrow zonke$	zo-	azi-	zona	ezi-	zo-	zi-
14	$ba-onke \rightarrow bonke$	bo-	abu-	bona	obu-	bo-	bu-
15	ku -onke \rightarrow konke	zo-	aku-	khona	oku-	zo-	ku-

◆□>
◆□>
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

isiZulu NLG Discussion

NC	QC (all)		NEG SC	PRON	RC	QCdwa	EC
	$QC_{oral+onke}$	$ \mathbf{QC_{nke}} $				uwu	
1	$u\text{-onke} \rightarrow wonke$	wo-	aka-	yena	0-	ye-	mu-
2	$ba-onke \rightarrow bonke$	bo-	aba-	bona	aba-	bo-	ba-
1a	u -onke \rightarrow wonke	wo-	aka-	yena	0-	ye-	mu-
2a	$ba-onke \rightarrow bonke$	bo-	aba-	bona	aba-	bo-	ba-
3a	u -onke \rightarrow wonke	wo-	aka-	wona	0-	ye-	mu-
(2a)	$ba-onke \rightarrow bonke$	bo-	aba-	bona	aba-	bo-	ba-
3	u -onke \rightarrow wonke	wo-	awu-	wona	0-	wo-	mu-
4	i -onke \rightarrow yonke	yo-	ayi-	yona	e-	yo-	mi-
5	$li-onke \rightarrow lonke$	lo-	ali-	lona	eli-	lo-	li-
6	a-onke \rightarrow onke	0-	awa-	wona	a-	wo-	ma-
7	$si-onke \rightarrow sonke$	SO-	asi-	sona	esi-	SO-	si-
8	zi -onke $\rightarrow zonke$	zo-	azi-	zona	ezi	zo-	zi-
9a	i -onke \rightarrow yonke	yo-	ayi-	yona	e-	yo-	yi-
(6)	a-onke \rightarrow onke	0-	awa-	wona	a-	wo-	ma-
9	i -onke \rightarrow yonke	yo-	ayi-	yona	e-	yo-	yi-
10	zi -onke $\rightarrow zonke$	zo-	azi-	zona	ezi-	zo-	zi-
11	$lu-onke \rightarrow lonke$	lo-	alu-	lona	olu-	lo-	lu-
(10)	zi -onke $\rightarrow zonke$	zo-	azi-	zona	ezi-	zo-	zi-
14	$ba-onke \rightarrow bonke$	bo-	abu-	bona	obu-	bo-	bu-
15	ku -onke \rightarrow konke	zo-	aku-	khona	oku-	ZO-	ku-

◆□>
◆□>
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

45 / 80

isiZulu NLG Discussion

NC	QC (all)		NEG SC	PRON	RC	QCdwa	EC
	$QC_{oral+onke}$	$\mathbf{QC_{nke}}$					
1	u -onke \rightarrow wonke	wo-	aka-	yena	0-	ye-	mu-
2	$ba-onke \rightarrow bonke$	bo-	aba-	bona	aba-	bo-	ba-
1a	u -onke \rightarrow wonke	wo-	aka-	yena	0-	ye-	mu-
2a	$ba-onke \rightarrow bonke$	bo-	aba-	bona	aba-	bo-	ba-
3a	u -onke \rightarrow wonke	wo-	aka-	wona	0-	ye-	mu-
(2a)	$ba-onke \rightarrow bonke$	bo-	aba-	bona	aba-	bo-	ba-
3	u -onke \rightarrow wonke	wo-	awu-	wona	0-	wo-	mu-
4	i -onke \rightarrow yonke	yo-	ayi-	yona	e-	yo-	mi-
5	$li-onke \rightarrow lonke$	lo-	ali-	lona	eli-	lo-	li-
6	a -onke \rightarrow onke	0-	awa-	wona	a-	wo-	ma-
7	$si-onke \rightarrow sonke$	SO-	asi-	sona	esi-	SO-	si-
8	$\mathrm{zi} ext{-onke} ightarrow \mathrm{zonke}$	zo-	azi-	zona	ezi	zo-	zi-
9a	i -onke \rightarrow yonke	yo-	ayi-	yona	e-	yo-	yi-
(6)	a-onke \rightarrow onke	0-	awa-	wona	a-	wo-	ma-
9	i -onke \rightarrow yonke	yo-	ayi-	yona	e-	yo-	yi-
10	zi -onke $\rightarrow zonke$	zo-	azi-	zona	ezi-	zo-	zi-
11	$lu-onke \rightarrow lonke$	lo-	alu-	lona	olu-	lo-	lu-
(10)	zi -onke $\rightarrow zonke$	zo-	azi-	zona	ezi-	zo-	zi-
14	$ba-onke \rightarrow bonke$	bo-	abu-	bona	obu-	bo-	bu-
15	$\text{ku-onke} \rightarrow \text{konke}$	zo-	aku-	khona	oku-	zo-	ku-

46 / 80

Possible patterns for existential quantification

- a. <All-concord for NC_x>onke <pl. N_1 , is in NC_x> <conjugated verb> < N_2 of NC_y> <RC for NC_y><QC for NC_y>dwa.
- b. <All-concord for NC_x>onke <pl. N₁, is in NC_x> <conjugated verb> noma <copulative ng/y adjusted to first letter of N₂><EP of NC_y>phi <N₂>.
- c. <All-concord for NC_x>onke <N₁ in NC_x> <conjugated verb> <N₂>thize;

Which options to choose?

- Survey, asking linguists and non-linguists for their preferences
- 10 questions pitting the patterns against each other
- Online, with isiZulu-localised version of Limesurvey (created as part of COMMUTERM project)
 - i.e., all text, buttons, autotext and error messages in isiZulu
- Analyse results in MS Excel

	(screenshot)		
	UNIVERSITY OF KWAZULU-NATA INYUVESI YAKWAZULU-NATA	NLG isiZulu	
	ise a umusho owodwa owuthandayo wa kulezi zimpendulo	athi NLG	
O Ikhar	nbi ngumuthi khambi yimithi		L
	ke amakhambi ngumuthi thathu		L
O Yomi			

http://limesurvey.cs.ukzn.ac.za/index.php?sid=25965&lang=zu

Motivation	isiZulu intro	isiZulu NLG ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○	Discussion	Conclusions
Results				

- 25 invited: students, academics (linguists), and non-linguists (such as administrators)
- 12 respondents: 5 linguists, 7 non-linguists (survey is still open)
- more agreement among linguists
- some differences possibly due to dialect
- preference for singular in subsumption
- other times plural
- other times also with universal quantification in the verbalization
- clear preference for the -dwa option

Motivation	isiZulu intro	isiZulu NLG ○○○○○○○○○○○○○○○○○	Discussion	Conclusions
Results				

- 25 invited: students, academics (linguists), and non-linguists (such as administrators)
- 12 respondents: 5 linguists, 7 non-linguists (survey is still open)
- more agreement among linguists
- some differences possibly due to dialect
- preference for singular in subsumption
- other times plural
- other times also with universal quantification in the verbalization
- clear preference for the -dwa option

Results

Question		R	lesponde	nt	Question		Respondent		nt
		Ling.	Non-	Total			Ling.	Non-	Total
			Ling.					Ling.	
	sing.	80	0	33		sing.+noma-phi	0	29	17
	pl.	0	43	25	1	pl.+noma-phi	0	0	0
1. isa	all+pl.	0	0	0	6. exists	either	20	0	8
	either	20	57	42	1	neither	80	71	75
	neither	0	0	0	1				
	sing.	80	86	83		sing.+-dwa	20	14	17
	pl.	0	0	0	1	pl.+-dwa	20	57	42
2. isa	all+pl.	0	0	0	7. exists	either	40	0	17
	either	0	14	8	1	neither	20	29	25
	neither	20	0	8	1				
	sing.	40	29	33		sing.+-dwa	0	14	8
	all+pl.	0	14	8	1	sing.+noma-phi	20	0	8
3. disj.	either	40	14	25	8. exists	pl.+noma-phi	80	57	67
	neither	20	43	33	1	either	0	0	0
					1	neither	0	29	17
	sing.	40	71	58		pl.+noma-phi	40	14	25
4. disj.	pl.	0	0	0	0	pl.+-thize	0	29	17
4. disj.	either	20	0	8	9. exists	either	40	43	42
	neither	40	29	33	1	neither	20	14	16
	pl.+-dwa	100	57	75		kanye	0	0	0
5. exists	pl.+noma-phi	0	14	8	10. and	futhi	0	14	8
5. exists	either	0	0	0	10. and	either	20	0	8
	neither	0	29	17	1	neither	80	86	83

Algorithm 1 Determine the verbalization of simple taxonomic subsumption 1: C set of classes, language \mathcal{L} with \sqsubseteq for subsumption and \neg for negation; variables: A axiom, NC_i nounclass, $c_1, c_2 \in C$, a_1 term, a_2 letter; functions: getFirstClass(A), $getSecondClass(A), getNC(C), pluralizeNoun(C, NC_i), checkNegation(A),$ $getFirstChar(C), getNSC(NC_i), getPNC(NC_i).$ **Require:** axiom A with a \Box has been retrieved 2: $c_1 \leftarrow getFirstClass(A)$ {get subclass} 3: $c_2 \leftarrow qetSecondClass(A)$ {get superclass} 4: $NC_1 \leftarrow aetNC(c_1)$ determine noun class by augment and prefix or dictionary 5: $NC_2 \leftarrow aetNC(c_2)$ determine noun class by augment and prefix or dictionary 6: if checkNegation(A) = true then $NC'_1 \leftarrow \text{lookup plural nounclass of } NC_1$ 7: {from known list} 8: $c'_1 \leftarrow pluralizeNoun(c_1, NC'_1)$ 9: $a_1 \leftarrow$ lookup quantitative concord for NC'_1 {from quantitative concord (QC(all)) list} 10: $n \leftarrow qetNSC(NC'_1)$ {get negative subject concord for c'_1 } 11: $p \leftarrow getPNC(NC_2)$ $\{\text{get pronomial for } c_2\}$ 12:RESULT \leftarrow ' $a_1 c'_1 np c_2$, ' {verbalise the disjointness} 13: else 14: $a_2 \leftarrow getFirstChar(c_2)$ {retrieve first letter of c_2 } 15:select case 16: $a_2 =$ 'i' then 17: RESULT \leftarrow ' c_1 v c_2 ' {verbalise as taxonomic subsumption with y} $a_2 = \{\text{`a', 'o', 'u'}\}$ then 18: 19: RESULT \leftarrow ' $c_1 \ \text{ng} c_2$ ' {verbalise as taxonomic subsumption with ng} 20: $a_2 \notin \{\text{`a', 'i', 'o', 'u',}\}$ then RESULT \leftarrow 'this is not a well-formed isiZulu noun' 21: 22: end select case 23: end if 24: return RESULT

isiZulu NLG Discussion

Algorithm 1 Determine the verbalization of simple taxonomic subsumption 1: C set of classes, language \mathcal{L} with \sqsubseteq for subsumption and \neg for negation; variables: A axiom, NC_i nounclass, $c_1, c_2 \in C$, a_1 term, a_2 letter: functions: act FirstClass(A), aetSecondClass(A), aetNC(C), pluralizedtion(A). retrieve class and get $getFirstChar(C), getNSC(NC_i), getPNC$ its noun class **Require:** axiom A with a \Box has been retrieved 2: $c_1 \leftarrow getFirstClass(A)$ get subclass 3: $c_2 \leftarrow qetSecondClass(A)$ {get superclass 4: $NC_1 \leftarrow aetNC(c_1)$ determine noun class by augment and prefix or dictionary 5: $NC_2 \leftarrow aetNC(c_2)$ determine noun class by augment and prefix or dictionary 6: if checkNegation(A) = true then $NC'_1 \leftarrow \text{lookup plural nounclass of } NC_1$ 7: {from known list} 8: $c'_1 \leftarrow pluralizeNoun(c_1, NC'_1)$ 9: $a_1 \leftarrow$ lookup quantitative concord for NC'_1 {from quantitative concord (QC(all)) list} 10: $n \leftarrow qetNSC(NC'_1)$ {get negative subject concord for c'_1 } 11: $p \leftarrow getPNC(NC_2)$ $\{\text{get pronomial for } c_2\}$ 12:RESULT \leftarrow ' $a_1 c'_1 np c_2$, ' {verbalise the disjointness} 13: else 14: $a_2 \leftarrow getFirstChar(c_2)$ {retrieve first letter of c_2 } 15:select case 16: $a_2 =$ 'i' then 17: RESULT \leftarrow ' c_1 v c_2 ' {verbalise as taxonomic subsumption with y} $a_2 = \{\text{`a', 'o', 'u'}\}$ then 18: RESULT \leftarrow ' $c_1 \ \text{ng} c_2$ ' 19: {verbalise as taxonomic subsumption with ng} 20: $a_2 \notin \{\text{`a', 'i', 'o', 'u',}\}$ then RESULT \leftarrow 'this is not a well-formed isiZulu noun' 21: 22: end select case 23: end if 24: return RESULT

Algorithm 1 Determine the verbalization of simple taxonomic subsumption 1: C set of classes, language \mathcal{L} with \sqsubseteq for subsumption and \neg for negation; variables: A axiom, NC_i nounclass, $c_1, c_2 \in C$, a_1 term, a_2 letter; functions: getFirstClass(A), $getSecondClass(A), getNC(C), pluralizeNoun(C, NC_i), checkNegation(A),$ $getFirstChar(C), getNSC(NC_i), getPNC(NC_i).$ **Require:** axiom A with a \Box has been retrieved 2: $c_1 \leftarrow getFirstClass(A)$ {get subclass} 3: $c_2 \leftarrow qetSecondClass(A)$ {get superclass} 4: $NC_1 \leftarrow qetNC(c_1)$ determine noun class by augment and prefix or dictionary 5: $NC_2 \leftarrow qetNC(c_2)$ determine noun class by augment and prefix or dictionary 6: if checkNegation(A) = true then $NC'_1 \leftarrow \text{lookup plural nounclass of } NC_1$ 7: {from known list} $c'_1 \leftarrow pluralizeNoun(c_1, NC'_1)$ 8: 9: $a_1 \leftarrow$ lookup quantitative concord for NC'_1 {from quantitative concord (QC(all)) list} 10: $n \leftarrow qetNSC(NC'_1)$ vice c'_{1} {ge 11: $p \leftarrow getPNC(NC_2)$ 'simple' ISA ial for co 12:Result \leftarrow ' $a_1 c'_1 np c_2$.' V anse the disjointness 13: else 14: $a_2 \leftarrow getFirstChar(c_2)$ {retrieve first letter of c2 15:select case 16: $a_2 = \text{`i' then}$ 17 RESULT \leftarrow ' c_1 v c_2 ' {verbalise as taxonomic subsumption with v $a_2 = \{\text{`a', 'o', 'u'}\}$ then 18 RESULT \leftarrow ' $c_1 \ \text{ng} c_2$ ' 19: {verbalise as taxonomic subsumption with no 20 $a_2 \notin \{\text{`a', 'i', 'o', 'u',}\}$ then 21 RESULT \leftarrow 'this is not a well-formed isiZulu noun' 22 end select case 23: end if 24: return RESULT

🖹 🔹 🔿 ९ (२) 55 / 80 Algorithm 1 Determine the verbalization of simple taxonomic subsumption 1: C set of classes, language \mathcal{L} with \sqsubseteq for subsumption and \neg for negation; variables: A axiom, NC_i nounclass, $c_1, c_2 \in C$, a_1 term, a_2 letter; functions: getFirstClass(A), $getSecondClass(A), getNC(C), pluralizeNoun(C, NC_i), checkNegation(A),$ $getFirstChar(C), getNSC(NC_i), getPNC(NC_i).$ **Require:** axiom A with a \Box has been retrieved 2: $c_1 \leftarrow getFirstClass(A)$ {get subclass} 3: $c_2 \leftarrow qetSecondClass(A)$ rclass negation (disjointness) 4: $NC_1 \leftarrow aetNC(c_1)$ determine ctionary 5: $NC_2 \leftarrow aetNC(c_2)$ determine noun class by ament and prefix or dictionary 6: if checkNegation(A) = true then $NC'_1 \leftarrow \text{lookup plural nounclass of } NC_1$ 7: {from known list 8: $c'_1 \leftarrow pluralizeNoun(c_1, NC'_1)$ 9: $a_1 \leftarrow$ lookup quantitative concord for NC'_1 {from quantitative concord (QC(all)) list} 10: $n \leftarrow getNSC(NC'_1)$ {get negative subject concord for c'_1 11: $p \leftarrow getPNC(NC_2)$ $\{\text{get pronomial for } c_2\}$ 12:Result \leftarrow ' $a_1 c'_1 np c_2$.' {verbalise the disjointness 13: else 14: $a_2 \leftarrow getFirstChar(c_2)$ $\{$ retrieve first letter of $c_2 \}$ 15:select case 16: $a_2 =$ 'i' then 17: RESULT \leftarrow ' c_1 v c_2 ' {verbalise as taxonomic subsumption with y} $a_2 = \{\text{`a', 'o', 'u'}\}$ then 18: 19: RESULT \leftarrow ' $c_1 \ \text{ng} c_2$ ' {verbalise as taxonomic subsumption with ng} 20: $a_2 \notin \{\text{`a', 'i', 'o', 'u',}\}$ then RESULT \leftarrow 'this is not a well-formed isiZulu noun' 21: 22: end select case 23: end if 24: return RESULT

। 56 / 80

Motivation	isiZulu intro	isiZulu NLG	Discussion	Co
	Algorithm 2 Determine the ve	rbalization of conjug	action in an axiom	
:	1: \mathcal{R} is the set of relationships			
	uses \square to denote conjunction			
	getNextVocabularyElement(A			
	Require: axiom with a \sqcap has been shown by the second			
	2: $e_2 \leftarrow getNextVocabularyElem$		{retrieve element after the □}	
	3: if $e_2 \in \mathcal{R} \cup \mathcal{A}$ then		(
	4: RESULT \leftarrow 'kanye'		{verbalise □ as kanye}	
	5: else			
	6: if $e_2 \in C$ then			
	7: $c_1 \leftarrow getFirstChar(e_1)$	2)	${\text{retrieve first letter of } e_2}$	
	8: select case			
	9: $c_1 = 'i'$ then			
	10: $e_2^- \leftarrow \operatorname{drop} c_1$			
	11: Result \leftarrow ' 1	$1ee_2^-$,	$\{verbalise \sqcap with ne- prefix\}$	
	12: $c_1 = \mathbf{u}$ then			
	13: $e_2^- \leftarrow \operatorname{drop} c_1$			
	14: Result \leftarrow ' 1	$10e_2^-$,	{verbalise □ with no- prefix}	
	15: $c_1 = 'a'$ then			
	16: $e_2^- \leftarrow \operatorname{drop} c_1$			
	17: RESULT \leftarrow '1		{verbalise ⊓ with na- prefix}	
	18: $c_1 \notin \{\text{'i', 'u', 'a'}\}$		1 : : : : : : : : : : : : : : : : : : :	
		nis is not a well-forme	d isiZulu noun'	
	20: end select case			
	21: else 22: RESULT \leftarrow 'this is not	a mall formed anion	,	
	22: RESULT \leftarrow this is not 23: end if	a well-formed axiom	•	
	23: end if			
	24. enu n			

25: return result

≣ • **ગ ૧** ભ 57 / 80

Conclusions

on 00000	isiZulu intro	isiZulu NLG	Discussion
	Algorithm 2 Determine the	verbalization of conj	junction in an axiom
	1: \mathcal{R} is the set of relationsh	• •	1 language \mathcal{L}
	uses \sqcap to denote conjunct		num-and or conn-and?
	getNextVocabularyElemen	t(A), getFirstChan	
	Require: axiom with a has h		U
	2: $e_2 \leftarrow getNextVocabularyEl$	ement(A)	${\text{retrieve element after the }}$
	3: if $e_2 \in \mathcal{R} \cup \mathcal{A}$ then		
	4: RESULT \leftarrow 'kanye '		{verbalise ⊓ as kanye}
	5: else		
	6: if $e_2 \in \mathcal{C}$ then		
	7: $c_1 \leftarrow getFirstChas$	$r(e_2)$	${retrieve first letter of e_2}$
	8: select case		
	9: $c_1 = $ 'i' then		
		c_1 from e_2	
	11: Result \leftarrow	4	{verbalise □ with ne- prefix}
	12: $c_1 = \mathbf{u}$ then		
		c_1 from e_2	
	14: Result ←	\cdot 'noe ₂ ''	{verbalise □ with no- prefix}
	15: $c_1 = 'a'$ then		
		c_1 from e_2	
	17: Result \leftarrow	2	{verbalise ⊓ with na- prefix}
	18: $c_1 \notin \{\text{'i', 'u', '}\}$	a'} then	

fix} fix} RESULT \leftarrow 'this is not a well-formed isiZulu noun' 19: end select case 20: 21: else RESULT \leftarrow 'this is not a well-formed axiom' 22:end if 23:24: end if 25: return RESULT

3 58 / 80

Conclusions

Motivation	isiZulu intro	isiZulu NLG	Discussion	Concl	lusions
	Algorithm 2 Determine the	verbalization of conjunct	ion in an aviom		
	$\frac{\text{Algorithm 2 Determine the }}{1: \mathcal{R} \text{ is the set of relationship}}$				
	uses \square to denote conjunction	, ,	, 0 0		
	getNextVocabularyElement		ster, A axioni, functions.		
	Require: axiom with a \sqcap has be		connective-and		
	2: $e_2 \leftarrow getNextVocabularvEle$		Preve element after the □}		
	3: if $e_2 \in \mathcal{R} \cup \mathcal{A}$ then	(increding)			
	4: RESULT \leftarrow 'kanye '		{verbalise □ as kanye}		
	5: else				
	6: if $e_2 \in C$ then				
	7: $c_1 \leftarrow getFirstChar$	(e_2)	${\text{retrieve first letter of } e_2}$		
	8: select case				
	9: $c_1 = 'i'$ then				
	10: $e_2^- \leftarrow drop$	c_1 from e_2			
	11: Result \leftarrow	nee_2^-	$\{verbalise \sqcap with ne- prefix\}$		
	12: $c_1 = 'u'$ then				
	13: $e_2^- \leftarrow \operatorname{drop}$				
	14: Result \leftarrow	noe_2^-	$\{verbalise \sqcap with no- prefix\}$		
	15: $c_1 = 'a'$ then				
	16: $e_2^- \leftarrow \operatorname{drop}$				
	17: Result \leftarrow		{verbalise ⊓ with na- prefix}		
	18: $c_1 \notin \{\text{'i', 'u', 'a}\}$				
		'this is not a well-formed i	siZulu noun'		
	20: end select case				
	21: else 22: RESULT \leftarrow 'this is r	ot a well-formed axiom'			
	22: RESULT \leftarrow this is f 23: end if	iot a well-formed axiom			
	23: end if				
	24: end n 25: return RESULT			æ	999
	20. ICIUM RESULI				59 / 80

Motivation	isiZulu intro	isiZulu NLG	Discussion DO	Conclusions	
		- 1			
	Algorithm 2 Determine the ver	-			
	1: \mathcal{R} is the set of relationships,				
	uses \sqcap to denote conjunction;		A axiom; functions:		
	getNextVocabularyElement(A)				
	Require: axiom with a \sqcap has been				
	2: $e_2 \leftarrow getNextVocabularyEleme$	$nt(A)$ {re	etrieve element after the \sqcap		
	3: if $e_2 \in \mathcal{R} \cup \mathcal{A}$ then				
	4: RESULT \leftarrow 'kanye'	enum	erative-and skanye}		
	5: else				
	6: if $e_2 \in \mathcal{C}$ then		Contract Contract of C		
	7: $c_1 \leftarrow getFirstChar(e_2)$ 8: select case		${\text{retrieve first letter of } e_2}$		
	9: $c_1 = i'$ then				
	10: $e_2^- \leftarrow \operatorname{drop} c_1$				
	11: RESULT \leftarrow ' ne	ee2 {	verbalise \sqcap with ne- prefix}		
	12: $c_1 = \mathbf{u}$ then				
	13: $e_2^- \leftarrow \operatorname{drop} c_1$				
	14: RESULT \leftarrow ' no	0e ₂ {	verbalise \sqcap with no- prefix}		
	15: $c_1 = \mathbf{a}^{\prime} \mathbf{then}$				
	16: $e_2^- \leftarrow \operatorname{drop} c_1$				
	17: RESULT \leftarrow ' ng		verbalise \sqcap with na- prefix}		
	18: $c_1 \notin \{\text{'i', 'u', 'a'}\} \mathbf{t}$				
		s is not a well-formed isiZulu	i noun'		
	20: end select case				
	21: else	11 6			
	22: RESULT \leftarrow 'this is not	a well-formed axiom			
	23: end if				
	24: end if			∃ • 𝒫 𝔄	Q
	25: return RESULT			60 / 8	0
				,	

Motivation	isiZulu intro	isiZulu NLG	Discussion	Conclusions
		000000000000000000000000000000000000000	00	

Algorithm 3 Determine the verbalization of existential quantification with object property (first, basic, version)

1: C set of classes, language \mathcal{L} with \Box for subsumption and \exists for existential guantification; variables: A axiom, NC_i noun class, $c_1, c_2 \in C$, $o \in \mathcal{R}$, a_1 a term; r_2, q_2 concords; functions: getFirstClass(A), getSecondClass(A), getNC(C), $pluralizeNoun(C, NC_i), getRC(NC_i) getQC(NC_i).$ **Require:** axiom A with a \Box and a \exists on the rhs of the inclusion has been retrieved 2: $c_1 \leftarrow getFirstClass(A)$ {get subclass} 3: $c_2 \leftarrow qetSecondClass(A)$ {get superclass} 4: $o \leftarrow qetObjProp(A)$ {get object property}

5: $NC_1 \leftarrow qetNC(c_1)$ {determine noun class by augment and prefix or dictionary} 6: $NC_2 \leftarrow qetNC(c_2)$ {determine noun class by augment and prefix or dictionary} 7: $NC'_1 \leftarrow$ lookup plural nounclass of NC_1 {from known list}

8: $c'_1 \leftarrow pluralizeNoun(c_1, NC'_1)$

9: $a_1 \leftarrow$ lookup quantitative concord for NC'_1 {from quantitative concord (QC(all)) list} 10: $o' \leftarrow AlgoConjugate(o, NC_1)$ {call algorithm AlgoConjugate to conjugate o} 11: $r_2 \leftarrow aetRC(NC_2)$ $\{$ get relative concord for $c_2 \}$ 12: $q_2 \leftarrow getQC(NC_2)$ {get quantitative concord for c2 from the QCdwa-list} 13: RESULT \leftarrow ' $a_1 c'_1 o' c_2 r_2 q_2$ dwa. ' {verbalise the simple axiom}

14: return RESULT

Motivation	isiZulu intro	isiZulu NLG	Discussion	Conclusions
		000000000000000000000000000000000000000	00	

Algorithm 3 Determine the verbalization of existential quantification with object property (first, basic, version)

1: C set of classes, language \mathcal{L} with \sqsubseteq for subsumption and \exists for existential quantification; variables: A axiom, NC_i noun class, $c_1, c_2 \in C$, $o \in \mathcal{R}$, a_1 a term; r_2, q_2 concords; functions: getFirstClass(A), getSecondClass(A), getNC(C), $pluralizeNoun(C, NC_i)$, $getRC(NC_i)$ $getQC(NC_i)$.

Require: axiom A with a \Box and a \exists on the rhs of the inclusion has been retrieved 2: $c_1 \leftarrow getFirstClass(A)$ {get subclass} 3: $c_2 \leftarrow qetSecondClass(A)$ {get superclass} 4: $o \leftarrow qetObjProp(A)$ {get object property} 5: $NC_1 \leftarrow qetNC(c_1)$ {determine noun class by augment and prefix or dictionary} 6: $NC_2 \leftarrow qetNC(c_2)$ {determine noun class by augment and prefix or dictionary} 7: $NC'_1 \leftarrow$ lookup plural nounclass of NC_1 n list } to be done... 8: $c'_1 \leftarrow pluralizeNoun(c_1, NC'_1)$ 9: a. (lookup quantitative concord for NC' Concord (OC(all)) list 10: $o' \leftarrow AlgoConjugate(o, NC_1)$ {call algorithm AlgoConjugate to conjugate o 11: $r_2 \leftarrow getRC(NC_2)$ get relative concord for c2 12: $q_2 \leftarrow getQC(NC_2)$ {get quantitative concord for c2 from the QCdwa-list} 13: RESULT \leftarrow ' $a_1 c'_1 o' c_2 r_2 q_2$ dwa. ' {verbalise the simple axiom} 14: return RESULT

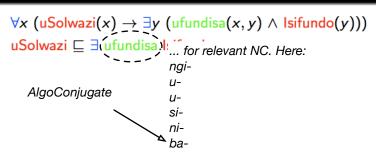
Example

- $\forall x \ (\operatorname{Professor}(x) \to \exists y \ (\operatorname{teaches}(x, y) \land \operatorname{Course}(y)))$
- Professor $\sqsubseteq \exists$ teaches.Course
- Each Professor teaches at least one Course
- $\forall x \ (uSolwazi(x) \rightarrow \exists y \ (ufundisa(x, y) \land lsifundo(y)))$
- uSolwazi ⊑ ∃ ufundisa.lsifundo
- ?

Example

- $\forall x \ (\operatorname{Professor}(x) \to \exists y \ (\operatorname{teaches}(x, y) \land \operatorname{Course}(y)))$
- Professor ⊑ ∃ teaches.Course
- Each Professor teaches at least one Course
- $\forall x (uSolwazi(x) \rightarrow \exists y (ufundisa(x, y) \land lsifundo(y)))$
- uSolwazi ⊑ ∃ ufundisa.Isifundo
- ?

isiZulu NLG Discussion

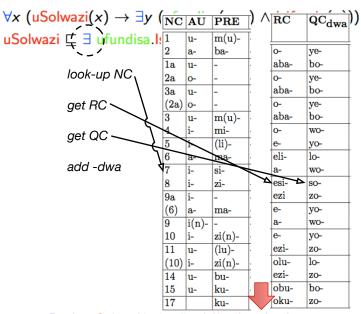

$\forall x \text{ (uSolwazi}(x) \rightarrow \exists y \text{ (ufundisa}(x, y) \land \text{ lsifundo}(y))) \\ \text{uSolwazi} \sqsubseteq \exists \text{ ufundisa.lsifundo}$

isiZulu NLG Discussion

$\forall x (uSolwazi(x) \rightarrow$	NC	AU	PRE	Īx.	<u>v)</u> ^	lsifundo(v)))
	1			Γ,	NC	$\mathbf{QC} (all)$
uSolwazi ⊑ ∃ ufuno	2	u-	m(u)- ba-	ľ		QC _{oral+onke}
`´	-	a-		ŀ	1	u -onke \rightarrow wonke
	la o	u-	-	ľ	2	ba-onke \rightarrow bonke
pluralise	2a	0-	-	ŀ	- 1a	u -onke \rightarrow wonke
pronunce	3a	u-	-	ŀ		
<i>c u</i> <u> </u>	(2a)	0-	-	ŀ	2a	ba-onke -→ bonke
for-all ———	3	u-	m(u)-	ŀ	3a	u-onke \rightarrow wonke
	4	i-	mi-		(2a)	$ba-onke \rightarrow bonke$
	5	i-	(li)-	ţ.	3	u-onke \rightarrow wonke
	6	a-	ma-		4	i-onke \rightarrow yonke
	7	i-	si-	ţ.	5	$li-onke \rightarrow lonke$
	8	i-	zi-		6	a-onke \rightarrow onke
	9a	i-	-	Ī	7	$si-onke \rightarrow sonke$
	(6)	a-	ma-		8	$zi-onke \rightarrow zonke$
	9	i(n)-	-	Ī.	9a	i-onke \rightarrow yonke
	10	i-	zi(n)-		(6)	a-onke \rightarrow onke
	11	u-	(lu)-	ŀ	9	i-onke \rightarrow yonke
	(10)	i-	zi(n)-		10	zi -onke $\rightarrow zonke$
	14	u-	bu-		11	$lu-onke \rightarrow lonke$
	15	u-	ku-	ŀ	(10)	$zi-onke \rightarrow zonke$
	17		ku-		14	$ba-onke \rightarrow bonke$
Bonke oSolwa	ızi				15	$\text{ku-onke} \rightarrow \text{konke}$

≣ • ી લ ભ 66 / 80

isiZulu NLG Discussion



≣ •০৭ে 67/80 isiZulu NLG Discussion

$\forall x \text{ (uSolwazi}(x) \rightarrow \exists y \text{ (ufundisa}(x, y) \land \text{ lsifundo}(y)))$ uSolwazi $\sqsubseteq \exists$ ufundisa lsifundo

≣ • ົ < ় 68 / 80

Bonke oSolwazi bafundisa Isifundo esisodwa

≣ •⁄ ९ २ (२ 69 / 80

Motivation

Motivation
0000000000

Outline

1 Motivation

- A few application scenarios
- NLG and knowledge management

2 isiZulu intro

3) isiZulu NLG

- Patterns and options
- Survey results
- Algorithms for selected constructs

4 Discussion

5 Conclusions

Motivation	isiZulu intro	isiZulu NLG	Discussion	Conclusions
Discussion				

- Template-based approach is not applicable to isiZulu (and, more generally: Bantu languages that have noun classes)
 - Or: grammar engine needed
- Devising the patterns hampered by outdated literature
- Several preferences for patterns
- Algorithms nontrivial; covering:
 - 'simple' existential and universal quantification
 - taxonomic subsumption
 - negation (class disjointness)
 - conjunction

Motivation	isiZulu intro	isiZulu NLG 00000000000000	Discussion	Conclusions
Discussion				

- Template-based approach is not applicable to isiZulu (and, more generally: Bantu languages that have noun classes)
 - Or: grammar engine needed
- Devising the patterns hampered by outdated literature
- Several preferences for patterns
- Algorithms nontrivial; covering:
 - 'simple' existential and universal quantification

(日) (周) (日) (日) (日)

72 / 80

- taxonomic subsumption
- negation (class disjointness)
- conjunction

Some other potential use: machine translation

- Google Translate English-isiZulu translates, e.g., "mix the sugar and milk and butter" as "*hlanganisa ushukela nobisi ibhotela*" (translation d.d. 14-1-2014)
 - Misses the second conjunction in the enumeration
 - ushukela □ ubisi □ ibhotela with Algorithm for conjunction obtains correct verbalisation/translation: ushukela nobisi nebhotela
- Google's "all giraffes eat twigs" is translated as "*yonke izindlulamithi udle amahlumela*" (translation d.d. 14-1-2014)
 - But *izindlulamithi* is in noun class 10, not 9, so it goes with *zonke*
 - This can be correctly verbalised following Algorithm subsumption verbalization (line 9).

Motivation	
0000000000	

Outline

Motivation

- A few application scenarios
- NLG and knowledge management

2 isiZulu intro

3) isiZulu NLG

- Patterns and options
- Survey results
- Algorithms for selected constructs

4 Discussion

Motivation	isiZulu intro	isiZulu NLG	Discussion	Conclusions
Conclusions				

- Novel verbalization patterns and algorithms for simple subsumption, disjoint classes, conjunction, and basic options with quantification
- Verbalizing formally represented knowledge in isiZulu requires a grammar engine even for the relatively basic language constructs
- Due to, principally: i) the system of noun classes, ii) the system of complex agreement, iii) phonological conditioned copulatives, and iv) verb conjugation
- The survey on verbalization pattern preference showed a clear preference for the *-dwa* option, and more variation in preference by the non-linguists

Motivation	isiZulu intro	isiZulu NLG	Discussion	Conclusions
Future work				

- \bullet To be done for 'full' OWL 2 EL and $\mathcal{ALC},$ mainly:
 - Transitivity
 - More elaborate axioms, such as $\forall R.C \sqsubseteq \exists S.(D \sqcap E)$
 - Negation in other cases
 - Union
- Conjugation of verbs present and past tense, and the prepositions (*taught* by, works *for*)
- Preference of patterns vs understandability
- Living vs. non-living thing distinction
- Interaction with multilingual ontologies (e.g., extending *Lemon* [McCrae et al.(2012)])
- Implement it

References I

Ronell Alberts, Thomas Fogwill, and C. Maria Keet.

Several required OWL features for indigenous knowledge management systems. In P. Klinov and M. Horridge, editors, *7th Workshop on OWL: Experiences and Directions (OWLED 2012)*, volume 849 of *CEUR-WS*, page 12p, 2012. 27-28 May, Heraklion, Crete, Greece.

F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors. *The Description Logics Handbook – Theory and Applications*. Cambridge University Press, 2 edition, 2008.

M. Curland and T. Halpin.

Model driven development with NORMA.

In Proceedings of the 40th International Conference on System Sciences (HICSS-40), pages 286a–286a. IEEE Computer Society, 2007. Los Alamitos, Hawaii.

Enrico Franconi, Paolo Guagliardo, and Marco Trevisan.

An intelligent query interface based on ontology navigation. In Workshop on Visual Interfaces to the Social and Semantic Web (VISSW'10), 2010. Hong Kong, February 2010.

Norbert E. Fuchs, Kaarel Kaljurand, and Tobias Kuhn.

Discourse Representation Structures for ACE 6.6. Technical Report ifi-2010.0010, Dept of Informatics, University of Zurich, Switzerland, 2010.

Mustafa Jarrar, C. Maria Keet, and Paolo Dongilli.

Multilingual verbalization of ORM conceptual models and axiomatized ontologies. Starlab technical report, Vrije Universiteit Brussel, Belgium, February 2006.

References II

C.M. Keet and L. Khumalo.

Toward verbalizing logical theories in isiZulu.

In Proceedings of the 4th Workshop on Controlled Natural Language (CNL'14), LNAI, page (accepted). Springer, 2014a. 20-22 August 2014, Galway, Ireland.

C.M. Keet and L. Khumalo.

Basics for a grammar engine to verbalize logical theories in isiZulu.

In Proceedings of the 8th International Web Rule Symposium (RuleML'14), LNCS, page (accepted). Springer, 2014b.

August 18-20, 2014, Prague, Czech Republic.

Tobias Kuhn.

A principled approach to grammars for controlled natural languages and predictive editors. *Journal of Logic, Language and Information*, 22(1):33–70, 2013.

John McCrae, Guadalupe Aguado de Cea, Paul Buitelaar, Philipp Cimiano, Thierry Declerck, Asunción Gómez-Pérez, Jorge Gracia, Laura Hollink, Elena Montiel-Ponsoda, Dennis Spohr, and Tobias Wunner. The lemon cookbook.

Technical report, Monnet Project, June 2012. www.lemon-model.net.

R. Schwitter, K. Kaljurand, A. Cregan, C. Dolbear, and G. Hart.

A comparison of three controlled natural languages for OWL 1.1. In Proceedings of OWL: Experiences and Directions (OWLED'08 DC), 2008. Washington, DC, USA metropolitan area, on 1-2 April 2008.

(日) (四) (王) (王) (王)

3

79/80

References III

Allan Third, Sandra Williams, and Richard Power.

OWL to English: a tool for generating organised easily-navigated hypertexts from ontologies. poster/demo paper, 2011. 10th International Semantic Web Conference (ISWC'11), 23-27 Oct 2011, Bonn, Germany.

Thank you!