Lecture 3: The Web Ontology Language OWL

Maria Keet

email: keet@ukzn.ac.za

home: http://www.meteck.org

School of Mathematics, Statistics, and Computer Science University of KwaZulu-Natal, South Africa

21/28 February 2012

- Introduction
 - W3C's layer cake
 - Limitations of RDFS
- OWL
 - Design of OWL
 - OWL family of languages
 - OWL and Description Logics
 - OWL Syntaxes
 - Layering OWL on top of RDF(S)

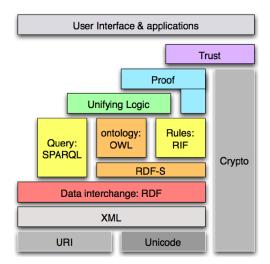
- First Order Predicate Logic, model theoretic-semantics
- Description Logics
- Tableau reasoning (exercises with the graph and with vegans and vegetarians)
 - Soundness (if $\Gamma \vdash \phi$ then $\Gamma \models \phi$) and completeness (if $\Gamma \models \phi$ then $\Gamma \vdash \phi$) [recollect " \vdash " derivable with a set of inference rules, and " \models " as implies, i.e., every truth assignment that satisfies Γ also satisfies ϕ]
 - If the algorithm is unsound then false conclusions can be

- First Order Predicate Logic, model theoretic-semantics
- Description Logics
- Tableau reasoning (exercises with the graph and with vegans) and vegetarians)

- First Order Predicate Logic, model theoretic-semantics
- Description Logics
- Tableau reasoning (exercises with the graph and with vegans and vegetarians)
 - Soundness (if $\Gamma \vdash \phi$ then $\Gamma \models \phi$) and completeness (if $\Gamma \models \phi$ then $\Gamma \vdash \phi$) [recollect " \vdash " derivable with a set of inference rules, and " \models " as implies, i.e., every truth assignment that satisfies Γ also satisfies ϕ]
 - If the algorithm is incomplete, then there exist entailments that cannot be computed (hence, missing some results)
 - If the algorithm is unsound then false conclusions can be derived from true premises, which his even more undesirable

- First Order Predicate Logic, model theoretic-semantics
- Description Logics
- Tableau reasoning (exercises with the graph and with vegans and vegetarians)
 - Soundness (if $\Gamma \vdash \phi$ then $\Gamma \models \phi$) and completeness (if $\Gamma \models \phi$ then $\Gamma \vdash \phi$) [recollect " \vdash " derivable with a set of inference rules, and " \models " as implies, i.e., every truth assignment that satisfies Γ also satisfies ϕ]
 - If the algorithm is incomplete, then there exist entailments that cannot be computed (hence, missing some results)
 - If the algorithm is unsound then false conclusions can be derived from true premises, which his even more undesirable

- Introduction
 - W3C's layer cake
 - Limitations of RDFS
- 2 OWL
 - Design of OWL
 - OWL family of languages
 - OWL and Description Logics
 - OWL Syntaxes
 - Layering OWL on top of RDF(S)


- Plethora of ontology languages; e.g., KIF, KL-ONE, LOOM, F-logic, DAML, OIL, DAML+OIL,
- Lack of a lingua franca; hence, ontology interoperation problems even on the syntactic level
- Advances in expressive DL languages and, more importantly, in automated reasoners for expressive DL languages (mainly: FaCT++, then Racer)
- Limitations of RDF(S) as Semantic Web 'ontology language'

•000000

Outline

- Introduction
 - W3C's layer cake
 - Limitations of RDFS
- - Design of OWL
 - OWL family of languages
 - OWL and Description Logics
 - OWL Syntaxes
 - Layering OWL on top of RDF(S)

The layer cake

Stack of Languages

- XML
 - Surface syntax, no semantics
- XML Schema
 - Describes structure of XML documents
- RDF
 - Datamodel for "relations" between "things"
- RDF Schema
 - RDF Vocabulary Definition Language

Outline

Introduction

0000000

- Introduction
 - W3C's layer cake
 - Limitations of RDFS
- 2 OWL
 - Design of OWL
 - OWL family of languages
 - OWL and Description Logics
 - OWL Syntaxes
 - Layering OWL on top of RDF(S)

RDFS as an Ontology Language

- Classes
- Properties
- Class hierarchies
- Property hierarchies
- Domain and range restrictions

Expressive limitations of RDF(S)

- Only binary relations
- Characteristics of Properties (e.g. inverse, transitive, symmetric)
- Local range restrictions (e.g. for Class Person, the property hasName has range xsd:string)
- Complex concept descriptions (e.g. Person is defined by Man and Woman)
- Cardinality restrictions (e.g. a Person may have at most 1 name)
- Disjointness axioms (e.g. nobody can be both a Man and a Woman)

Layering issues

- Syntax
 - Only binary relations in RDF
 - Verbose Syntax
 - No limitations on graph in RDF
 - Every graph is valid
- Semantics
 - Malformed graphs
 - Use of vocabulary in language
 - e.g. (rdfs:Class,rdfs:subClassOf,ex:a)
 - Meta-classes
 - e.g. (ex:a,rdf:type,ex:a)

- A toront area
 - W3C's layer cake
 - Limitations of RDFS
- OWL
 - Design of OWL
 - OWL family of languages
 - OWL and Description Logics
 - OWL Syntaxes
 - Layering OWL on top of RDF(S)

Stack of Languages

- XMI
 - Surface syntax, no semantics
- XML Schema
 - Describes structure of XML documents
- RDF
 - Datamodel for "relations" between "things"
- RDF Schema
 - RDF Vocabulary Definition Language
- OWL
 - A more expressive Vocabulary Definition Language

Outline

- Introduction
 - W3C's layer cake
 - Limitations of RDFS
- OWL
 - Design of OWL
 - OWL family of languages
 - OWL and Description Logics
 - OWL Syntaxes
 - Layering OWL on top of RDF(S)

Design Goals for OWL

- Shareable
- Changing over time
- Interoperability
- Inconsistency detection
- Balancing expressivity and complexity
- Ease of use
- Compatible with existing standards
- Internationalization

Requirements for OWL

- Ontologies are object on the Web
- with their own meta-data, versioning, etc...
- Ontologies are extendable
- They contain classes, properties, data-types, range/domain, individuals
- Equality (for classes, for individuals)
- Classes as instances
- Cardinality constraints
- XML syntax

OWL

Objectives for OWL

Objectives:

- layered language
- complex datatypes
- digital signatures
- decidability (in part)
- local unique names (in part)

Disregarded:

- default values
- closed world option
- property chaining
- arithmetic
- string operations
- partial imports
- view definitions
- procedural
 attachment

Objectives for OWL

Objectives:

- layered language
- complex datatypes
- digital signatures
- decidability (in part)
- local unique names (in part)

Disregarded:

- default values
- closed world option
- property chaining
- arithmetic
- string operations
- partial imports
- view definitions
- procedural attachments

Extending RDF Schema

- Leveraging experiences with OWL's predecessors SHOE, OIL, DAML-ONT, and DAML+OIL (frames, OO, DL)
- OWL extends RDF Schema to a full-fledged knowledge representation language for the Web
 - Logical expressions (and, or, not)
 - (in)equality
 - local properties
 - required/optional properties
 - required values
 - enumerated classes
 - symmetry, inverse

Outline

Introduction

- - W3C's layer cake
 - Limitations of RDFS
- **OWL**
 - Design of OWL
 - OWL family of languages
 - OWL and Description Logics
 - OWL Syntaxes
 - Layering OWL on top of RDF(S)

- Classification biomerchy
 - Simple constraints
- OWL DL
 - Maximal expressiveness
 - While maintaining tractability
 - Standard formalization in a DL
- OWL Full
 - Very high expressiveness
 - Losing tractability
 - All syntactic freedom of RDF (self-modifying)

Species of OWL

- OWL Lite
 - Classification hierarchy
 - Simple constraints
- OWL DL
 - Maximal expressiveness
 - While maintaining tractability
 - Standard formalization in a DL
- OWL Full
 - Very high expressiveness
 - Losing tractability
 - All syntactic freedom of RDF (self-modifying)

Species of OWL

- OWL Lite
 - Classification hierarchy
 - Simple constraints
- OWL DL
 - Maximal expressiveness
 - While maintaining tractability
 - Standard formalization in a DL
- OWL Full
 - Very high expressiveness
 - Losing tractability
 - All syntactic freedom of RDF (self-modifying)

Species of OWL

- OWL Lite
 - Classification hierarchy
 - Simple constraints
- OWL DL
 - Maximal expressiveness
 - While maintaining tractability
 - Standard formalization in a DL
- OWL Full
 - Very high expressiveness
 - Losing tractability
 - All syntactic freedom of RDF (self-modifying)

O\VI Lite

- (sub)classes, individuals
- (sub)properties, domain, range
- conjunction
- (in)equality
- (unqualified) cardinality 0/1
- datatypes
- inverse, transitive, symmetric properties
- someValuesFrom
- allValuesFrom

OWI DI

- Negation
- Disjunction
- (unqualified) Full cardinality
- Enumerated classes
- hasValue

- Meta-classes
- Modify language

OWI Lite

- (sub)classes, individuals
- (sub)properties, domain, range
- conjunction
- (in)equality
- (unqualified) cardinality 0/1
- datatypes
- inverse, transitive, symmetric properties
- someValuesFrom
- allValuesFrom

Negation

- Disjunction
- (unqualified) Full cardinality
- Enumerated classes
- hasValue

- Meta-classes
- Modify language

OWI Lite

- (sub)classes, individuals
- (sub)properties, domain, range
- conjunction
- (in)equality
- (unqualified) cardinality 0/1
- datatypes
- inverse, transitive, symmetric properties
- someValuesFrom
- allValuesFrom

OWL DL

Negation

- Disjunction
- (unqualified) Full cardinality
- Enumerated classes
- hasValue

- Meta-classes
- Modify language

OWI Lite

- (sub)classes, individuals
- (sub)properties, domain, range
- conjunction
- (in)equality
- (unqualified) cardinality 0/1
- datatypes
- inverse, transitive, symmetric properties
- someValuesFrom
- allValuesFrom

OWL DL

Negation

- Disjunction
- (unqualified) Full cardinality
- Enumerated classes
- hasValue
- OWI Full
 - Meta-classes
 - Modify language

- No restriction on use of vocabulary (as long as legal RDF)
 - Classes as instances (and much more)
- RDF style model theory
 - Reasoning using FOL engine
 - Semantics should correspond to OWL DL for restricted KBs

OWL DL

- Use of vocabulary restricted
 - Cannot be used to do "nasty things" (e.g., modify OWL)
 - No classes as instances (this will be discussed in a later lecture)
 - Defined by abstract syntax
- Standard DL-based model theory
 - Direct correspondence with a DL
 - Automated reasoning with DL reasoners (e.g., Racer, Pellet, FaCT⁺⁺)

OWL Lite

- No explicit negation or union
- Restricted cardinality (0/1)
- No nominals (oneOf)
- DI -based semantics
 - Automated reasoning with DL reasoners (e.g., Racer, Pellet, FaCT⁺⁺)

More on OWL species

- OWL Full is not a Description Logic
- OWL Lite has strong syntactic restrictions, but only limited semantics restrictions cf. OWL DL
 - Negation can be encoded using disjointness
 - With negation an conjunction, you can encode disjunction
- For instance:

```
Class(C complete unionOf(B C))
is equivalent to:
```

```
DisjointClasses(notB B)
DisjointClasses(notC C)
```

Class(notBandnotC complete notB notC)

DisjointClasses(notBandnotC BorC)

Class(C complete notBandnotC)

More on OWL species

- OWL Full is not a Description Logic
- OWL Lite has strong syntactic restrictions, but only limited semantics restrictions cf. OWL DL
 - Negation can be encoded using disjointness
 - With negation an conjunction, you can encode disjunction
- For instance:

```
Class(C complete unionOf(B C))
```

is equivalent to:

DisjointClasses(notB B)

DisjointClasses(notC C)

Class(notBandnotC complete notB notC)

DisjointClasses(notBandnotC BorC)

Class(C complete notBandnotC)

Outline

- Introduction
 - W3C's layer cake
 - Limitations of RDFS
- OWL
 - Design of OWL
 - OWL family of languages
 - OWL and Description Logics
 - OWL Syntaxes
 - Layering OWL on top of RDF(S)

OWL lite

OWL Lite corresponds to the DL $\mathcal{SHIF}(\mathbf{D})$. It has:

- Named classes (A)
- Named properties (P)
- Individuals (C(o))
- Property values (P(o, a))
- Intersection $(C \sqcap D)$
- Union (C ⊔ D)
- Negation $(\neg C)$
- Existential value restrictions (∃P.C)
- Universal value restrictions (∀P.C)
- Unqualified (0/1) number restrictions ($\geq nP$, $\leq nP$, = nP), 0 < n < 1

OWL DL

OWL DL corresponds to the DL $\mathcal{SHOIN}(\mathbf{D})$. In addition to all of OWL Lite, it has also:

- Arbitrary number restrictions ($\geq nP$, $\leq nP$, = nP), $0 \leq n$
- Property value $(\exists P.\{o\})$
- Enumeration $({o_1, ..., o_n})$

OWL constructs (summarised from the standard)

OWL Construct	DL	Example	
intersectionOf	$C_1 \sqcap \sqcap C_n$	Human □ Male	
unionOf	$C_1 \sqcup \sqcup C_n$	$Doctor \sqcup Lawyer$	
complementOf	$\neg C$	eg Male	
oneOf	$\{o_1,, o_n\}$	$\{giselle, juan\}$	
allValuesFrom	∀P.C	\forall has Child. Doctor	
some Values From	∃ <i>P</i> . <i>C</i>	\exists has Child. Lawyer	
value	∃ <i>P</i> .{ <i>o</i> }	$\exists citizenOf.\{RSA\}$	
minCardinality	$\geq nP$	\geq 2hasChild	
maxCardinality	$\leq nP$	≤ 1 has ${\it Child}$	
cardinality	= nP	= 2 has Parent	
VMI Calcada dataturas intertiinu usal ata			

OWL axioms

OWL Axiom	DL	Example
SubClassOf	$C_1 \sqsubseteq C_2$	Human ⊑ Animal □ Biped
EquivalentClasses	$C_1 \equiv \equiv C_n$	$\mathit{Man} \equiv \mathit{Human} \sqcap \mathit{Male}$
SubPropertyOf	$P_1 \sqsubseteq P_2$	$\mathit{hasDaughter} \sqsubseteq \mathit{hasChild}$
EquivalentProperties	$P_1 \equiv \equiv P_n$	$cost \equiv price$
SameIndividual	$o_1 = = o_n$	President_Zuma = J_Zuma
DisjointClasses	$C_i \sqsubseteq \neg C_j$	M ale $\sqsubseteq eg F$ emale
DifferentIndividuals	$o_i \neq o_j$	sally eq shereen
inverseOf	$P_1 \equiv P_2^-$	$hasChild \equiv hasParent^-$
Transitive	$P^+ \sqsubseteq \bar{P}$	ancestor $^+ \sqsubseteq$ ancestor
Symmetric	$P \equiv P^-$	$connectedTo \equiv connectedTo^-$

Outline

- - W3C's layer cake
 - Limitations of RDFS
- **OWL**
 - Design of OWL
 - OWL family of languages
 - OWL and Description Logics
 - OWL Syntaxes
 - Layering OWL on top of RDF(S)

Syntaxes of OWL

- RDF
 - Official exchange syntax
 - Hard for humans
 - RDF parsers are hard to write!
- XML
 - Not the RDF syntax
 - Still hard for humans, but more XML than RDF tools available
- Abstract syntax
 - Not defined for OWL Full
 - To some, considered human readable
- User-usable ones
 - e.g., Manchester syntax, informal and limited matching with UML, pseudo-NL verbalizations (mainly in English only)

OWL in RDF/XML

Example from [OwlGuide]:

```
<!ENTITY vin
"http://www.w3.org/TR/2004/REC-owl-guide-20040210/wine#" >
<!ENTITY food
"http://www.w3.org/TR/2004/REC-owl-guide-20040210/food#" > ...
< rdf \cdot RDF
xmlns:vin="http://www.w3.org/TR/2004/REC-owl-guide-20040210/wine#"
xmlns:food="http://www.w3.org/TR/2004/REC-owl-guide-20040210/food#"
... >
<owl:Class rdf:ID="Wine"> <rdfs:subClassOf</pre>
rdf: resource="&food;PotableLiquid"/> <rdfs:label
xml:lang="en">wine</rdfs:label> <rdfs:label
xml:lang="fr">vin</rdfs:label> ... </owl:Class>
<owl:Class rdf:ID="Pasta"> <rdfs:subClassOf</pre>
rdf:resource="#EdibleThing"/> ... </owl:Class> </rdf:RDF>
```

OWL Abstract syntax

```
Class (professor partial)
  Class (associateProfessor partial academicStaffMember)
   DisjointClasses ( associateProfessor assistantProfessor )
   DisjointClasses (professor associateProfessor)
  Class (faculty complete academicStaffMember)
In DL syntax:
associateProfessor \sqsubseteq academicStaffMember
associateProfessor \Box \neg assistantProfessor
professor \square \neg associateProfessor
faculty \equiv academicStaffMember
```

More examples

range(student))

```
DatatypeProperty(age range(xsd:nonNegativeInteger))
ObjectProperty(lecturesIn)
ObjectProperty(isTaughtBy domain(course) range(academicStaffMember))
SubPropertyOf(isTaughtBy involves)
ObjectProperty(teaches inverseOf(isTaughtBy)
domain(academicStaffMember) range(course))
EquivalentProperties (lecturesIn teaches)
ObjectProperty(hasSameGradeAs Transitive Symmetric domain(student)
```

More examples

In DL syntax:

 $\top \sqsubseteq \forall age.xsd : nonNegativeInteger$ $\top \sqsubseteq \forall isTaughtBy^-.course$ $\top \sqsubseteq \forall isTaughtBy.academicStaffMember$ $isTaughtBy \sqsubseteq involves$ $teaches \equiv isTaughtBy^ \top \sqsubseteq \forall teaches^-.academicStaffMember$ $\top \sqsubseteq \forall teaches.course$ $lecturesIn \equiv teaches$ $hasSameGradeAs^+ \sqsubseteq hasSameGradeAs^ \top \sqsubseteq \forall hasSameGradeAs^-.student$

 $\top \sqsubseteq \forall hasSameGradeAs.student$

```
Individual (949318 type( lecturer ))

Individual (949352 type(academicStaffMember) value(age "39"^^&xsd;integer))

ObjectProperty(isTaughtBy Functional)

Individual (CIT1111 type(course) value(isTaughtBy 949352) value(isTaughtBy 949318))

DifferentIndividuals (949318 949352) DifferentIndividuals (949352 949111 949318)
```

More examples

```
In DL syntax: 949318 : lecturer 949352 : academicStaffMember \langle 949352, "39" ^^&xsd; integer \rangle : age \top \subseteq \le 1 isTaughtBy CIT1111 : course \langle CIT1111, 949352 \rangle : isTaughtBy \langle CIT1111, 949318 \rangle : isTaughtBy 949318 \neq 949352 949319 949319 949319 949319 949319 949319 949319 949319 949319 949319 949319 949319 949319
```

Class (firstYearCourse partial restriction (isTaughtBy allValuesFrom (Professor)))

Class (mathCourse partial restriction (isTaughtBy hasValue (949352)))

Class (academicStaffMember partial restriction (teaches someValuesFrom (undergraduateCourse)))

 ${\sf Class}({\sf course}\ \ {\sf partial}\ \ {\sf restriction}\ ({\sf isTaughtBy}\ {\sf minCardinality}\ (1)))$

Class (department partial restriction (has Member minCardinality(10)) restriction (has Member maxCardinality(30)))

In DL syntax:

```
firstYearCourse \sqsubseteq \forall isTaughtBy.Professor mathCourse \sqsubseteq \exists isTaughtBy.\{949352\} academicStaffMember \sqsubseteq \exists teaches.undergraduateCourse course \sqsubseteq \ge 1 isTaughtBy department \sqsubseteq \ge 10 hasMember \subseteq 30 hasMember
```

```
Class(course partial complementOf(staffMember))
  Class (peopleAtUni complete unionOf(staffMember student))
  Class (facultyInCS complete intersectionOf (faculty
   restriction (belongsTo hasValue (CSDepartment))))
  Class (adminStaff complete intersectionOf ( staffMember
  complementOf(unionOf(faculty techSupportStaff))))
In DL syntax:
course \sqsubseteq \neg staffMember
peopleAtUni \equiv staffMember \sqcup student
facultyInCS \equiv faculty \sqcap \exists belongsTo. \{CSDepartment\}
adminStaff \equiv staffMember \sqcap \neg (faculty \sqcup techSupportStaff)
```

Outline

Introduction

- Introduction
 - W3C's layer cake
 - Limitations of RDFS
- OWL
 - Design of OWL
 - OWL family of languages
 - OWL and Description Logics
 - OWL Syntaxes
 - Layering OWL on top of RDF(S)

Layering on top of RDF(S)

- RDF(S) bottom layer in Semantic Web stack
- Higher languages layer on top of RDFS

Syntactic Layering

- Every valid RDF statement is a valid statement in a higher language
- This includes triples containing keywords of these languages(!)

Semantic Layering

For RDFS graph G and higher-level language L:

If $G \models_{RDFS} G'$ then $G \models_{L} G'$, and ideally

if $G \models_L G'$ then $G \models_{RDFS} G'$

Introduction

Syntactically layering OWL on RDF(S)

OWL Lite, OWL DL

- OWL Lite, OWL DL subsets of RDF
- Allowed triples defined through mapping from abstract syntax
- Partial layering:
 - every OWL Lite/DL ontology is an RDF graph
 - some RDF graphs are OWL Lite/DL ontologies

OWL Full

- OWL Full encompasses RDF
- Complete layering:

- every OWL Full is an RDF graph
- all RDF graphs are OWL Full ontologies

Semantically layering OWL on RDF(S)

OWL Lite, OWL DL

- OWL Lite/DL semantics not related to RDFS semantics
- Redefine semantics of RDFS keywords, e.g., rdfs:subClassOf
- Work ongoing to describe correspondence between subset of RDFS and OWL Lite/DL

OWL Full

 OWL Full semantics is extension of RDFS semantics

- OWL Full is undecidable
- OWL Full semantics hard to understand

- RDF Graph defined through translation from Abstract Syntax
- Example:

```
Class(Human partial Animal restriction(hasLegs cardinality(2)) restriction(hasName allValuesFrom(xsd:string)))
```

```
Human rdf:type owl.Class
Human rdfs:subClassOf Animal
Human rdfs:subClassOf ...X1
.:X1 rdf:type owl.Restriction
.:X1 owl:onProperty hasLegs
.:X1 owl:cardinality "2"8sd:nonNegativeIntege
Human rdfs:subClassOf ...X2
.:X2 rdf:type owl:Restriction
.:X2 owl:onProperty hasName
.:X2 owl:allValuesFrom xsd:string
```

- RDF Graph defined through translation from Abstract Syntax
- Example:

```
Class(Human partial Animal restriction(hasLegs cardinality(2)) restriction(hasName allValuesFrom(xsd:string)))
```

Human	rdf:type	owl:Class
Human	rdfs:subClassOf	Animal
Human	rdfs:subClassOf	_:X1
_:X1	rdf:type	owl:Restriction
_:X1	owl:onProperty	hasLegs
_:X1	owl:cardinality	"2"8sd:nonNegativeInteger
Human	rdfs:subClassOf	_:X2
_:X2	rdf:type	owl:Restriction
_:X2	owl:onProperty	hasName
_:X2	owl:allValuesFrom	xsd:string

- Not every RDF graph is OWL Lite/DL ontology
- Example:
 - A rdf:type A
- How to check whether an RDF graph G is OWL DL?
 Construct an OWL ontology O in Abstract Syntax
 Translate to RDF graph G'
 If G=G', then G is OWL DL
 Otherwise, go to step (1)

- Not every RDF graph is OWL Lite/DL ontology
- Example:
 - A rdf:type A
- How to check whether an RDF graph G is OWL DL?
 Construct an OWL ontology O in Abstract Syntax
 Translate to RDF graph G'
 If G=G', then G is OWL DL
 - Otherwise, go to step (1)

Introduction

- Introduction
 - W3C's layer cake
 - Limitations of RDFS
- OWL
 - Design of OWL
 - OWL family of languages
 - OWL and Description Logics
 - OWL Syntaxes
 - Layering OWL on top of RDF(S)

- Section 8 of Horrocks et. al.'s paper outlines possible "Future extensions"
- OWL 2 has become a W3C recommendation on 27 Oct 2009
- We look at the new recommendation in the following lectures