
Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

COMP718: Ontologies and Knowledge Bases
Lecture 8: Methods and Methodologies

Maria Keet
email: keet@ukzn.ac.za

home: http://www.meteck.org

School of Mathematics, Statistics, and Computer Science
University of KwaZulu-Natal, South Africa

27 March 2012

1/44

keet@ukzn.ac.za
http://www.meteck.org


Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Outline

1 Parameters and dependencies

2 Example methods: OntoClean and Debugging
Guidance for modelling: OntoClean
Debugging ontologies

3 Methodologies and tools
Macro-level methodologies
Micro-level methodologies
Tools

2/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

The landscape

Difference between method and methodology

Difference between writing down what you did (to make it a
‘guideline’) vs. experimentally validating a methodology

Isn’t ontology development just like conceptual data model
development?

yes: e.g., interaction with the domain expert, data analysis
no: e.g., logic, automated reasoning, using (parts of) other
ontologies, different scopes/purposes, specific isolated
application scenario vs. general knowledge

There are plenty methods and guidelines for ontology
development—use them.

3/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

The landscape

Difference between method and methodology

Difference between writing down what you did (to make it a
‘guideline’) vs. experimentally validating a methodology

Isn’t ontology development just like conceptual data model
development?

yes: e.g., interaction with the domain expert, data analysis
no: e.g., logic, automated reasoning, using (parts of) other
ontologies, different scopes/purposes, specific isolated
application scenario vs. general knowledge

There are plenty methods and guidelines for ontology
development—use them.

3/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

The landscape

Difference between method and methodology

Difference between writing down what you did (to make it a
‘guideline’) vs. experimentally validating a methodology

Isn’t ontology development just like conceptual data model
development?

yes: e.g., interaction with the domain expert, data analysis
no: e.g., logic, automated reasoning, using (parts of) other
ontologies, different scopes/purposes, specific isolated
application scenario vs. general knowledge

There are plenty methods and guidelines for ontology
development—use them.

3/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

The landscape

Difference between method and methodology

Difference between writing down what you did (to make it a
‘guideline’) vs. experimentally validating a methodology

Isn’t ontology development just like conceptual data model
development?

yes: e.g., interaction with the domain expert, data analysis
no: e.g., logic, automated reasoning, using (parts of) other
ontologies, different scopes/purposes, specific isolated
application scenario vs. general knowledge

There are plenty methods and guidelines for ontology
development—use them.

3/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

The landscape

Difference between method and methodology

Difference between writing down what you did (to make it a
‘guideline’) vs. experimentally validating a methodology

Isn’t ontology development just like conceptual data model
development?

yes: e.g., interaction with the domain expert, data analysis
no: e.g., logic, automated reasoning, using (parts of) other
ontologies, different scopes/purposes, specific isolated
application scenario vs. general knowledge

There are plenty methods and guidelines for ontology
development—use them.

3/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

The landscape

Difference between method and methodology

Difference between writing down what you did (to make it a
‘guideline’) vs. experimentally validating a methodology

Isn’t ontology development just like conceptual data model
development?

yes: e.g., interaction with the domain expert, data analysis
no: e.g., logic, automated reasoning, using (parts of) other
ontologies, different scopes/purposes, specific isolated
application scenario vs. general knowledge

There are plenty methods and guidelines for ontology
development—use them.

3/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Outline

1 Parameters and dependencies

2 Example methods: OntoClean and Debugging
Guidance for modelling: OntoClean
Debugging ontologies

3 Methodologies and tools
Macro-level methodologies
Micro-level methodologies
Tools

4/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

The changing landscape

Multiple modelling issues in ontology development (e.g.,
part-of, uncertainty, prototypes, multilingualism),
methodological issues, highly specialised knowledge

W3C’s incubator group on modelling uncertainty,
mushrooming of bio-ontologies, ontology design patterns,
W3C standard OWL, etc.

Solving the early-adopter issues has moved the goal-posts,
and uncovered new issues; e.g.:

Which ontologies are reusable for one’s own ontology, in whole
or in part?
What are the consequences of choosing one ontology over the
other?
OWL 2 has 5 languages: which one should be used for what
and when?

5/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Parameters

Which parameters affect ontology development?
Where?
How?

We consider:

Purposes
Reusing ontologies
Bottom-up development
Languages
Reasoning services

6/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Parameters

Which parameters affect ontology development?
Where?
How?

We consider:

Purposes
Reusing ontologies
Bottom-up development
Languages
Reasoning services

6/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Purposes

Querying data by means of an ontology (OBDA) through
linking databases to an ontology

Database integration

Structured controlled vocabulary to link data(base) records
and navigate across databases on the Internet (‘linked data’)

Using it as part of scientific discourse and advancing research
at a faster pace, (including experimental ontologies)

Coordination among and integration of Web Services

7/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Purposes

Ontology in an ontology-driven information system destined
for run-time usage, e.g., in scientific workflows, MASs,
ontology-mediated data clustering, and user interaction in
e-learning

Ontologies for NLP, e.g. annotating and querying Digital
Libraries and scientific literature, QA systems, and materials
for e-learning

As full-fledged discipline “Ontology (Science)”, where an
ontology is a formal, logic-based, representation of a scientific
theory

Tutorial ontologies, e.g., the wine and pizza ontologies

8/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Reusing ontologies

Foundational ontologies

Reference ontologies

Domain ontologies that have an overlap with the new
ontology;

For each of them, resource usage considerations, such as

Availability of the resource (open, copyright)
If the source is being maintained or abandoned one-off effort;
Community effort, research group, and if it has already some
adoption or usage;
Subject to standardization policies or stable releases;
If the ontology is available in the desired or required ontology
language.

9/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Reusing ontologies

Foundational ontologies

Reference ontologies

Domain ontologies that have an overlap with the new
ontology;

For each of them, resource usage considerations, such as

Availability of the resource (open, copyright)
If the source is being maintained or abandoned one-off effort;
Community effort, research group, and if it has already some
adoption or usage;
Subject to standardization policies or stable releases;
If the ontology is available in the desired or required ontology
language.

9/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Example

image from http://www.imbi.uni-freiburg.de/ontology/biotop/

10/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Bottom-up development

Reuse of other knowledge-based representations:
conceptual data models (UML diagrams, ER, and ORM)

Database (and OO) reverse engineering, and least common
subsumer and clustering to infer new concepts;

Abstractions from or formalisations of models in textbooks
and diagram-based software;

Thesauri and other structured vocabularies;

Other (semi-)structured data, such as spreadsheets and
company product catalogs;

Text mining of documents to find candidate terms for
concepts and relations;

Terminologies, lexicons, and glossaries;

Wisdom of the crowds tagging, tagging games, and
folksonomies;

11/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Bottom-up development

Reuse of other knowledge-based representations:
conceptual data models (UML diagrams, ER, and ORM)

Database (and OO) reverse engineering, and least common
subsumer and clustering to infer new concepts;

Abstractions from or formalisations of models in textbooks
and diagram-based software;

Thesauri and other structured vocabularies;

Other (semi-)structured data, such as spreadsheets and
company product catalogs;

Text mining of documents to find candidate terms for
concepts and relations;

Terminologies, lexicons, and glossaries;

Wisdom of the crowds tagging, tagging games, and
folksonomies;

11/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Bottom-up development

Reuse of other knowledge-based representations:
conceptual data models (UML diagrams, ER, and ORM)

Database (and OO) reverse engineering, and least common
subsumer and clustering to infer new concepts;

Abstractions from or formalisations of models in textbooks
and diagram-based software;

Thesauri and other structured vocabularies;

Other (semi-)structured data, such as spreadsheets and
company product catalogs;

Text mining of documents to find candidate terms for
concepts and relations;

Terminologies, lexicons, and glossaries;

Wisdom of the crowds tagging, tagging games, and
folksonomies;

11/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Bottom-up development

Reuse of other knowledge-based representations:
conceptual data models (UML diagrams, ER, and ORM)

Database (and OO) reverse engineering, and least common
subsumer and clustering to infer new concepts;

Abstractions from or formalisations of models in textbooks
and diagram-based software;

Thesauri and other structured vocabularies;

Other (semi-)structured data, such as spreadsheets and
company product catalogs;

Text mining of documents to find candidate terms for
concepts and relations;

Terminologies, lexicons, and glossaries;

Wisdom of the crowds tagging, tagging games, and
folksonomies;

11/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Bottom-up development

Reuse of other knowledge-based representations:
conceptual data models (UML diagrams, ER, and ORM)

Database (and OO) reverse engineering, and least common
subsumer and clustering to infer new concepts;

Abstractions from or formalisations of models in textbooks
and diagram-based software;

Thesauri and other structured vocabularies;

Other (semi-)structured data, such as spreadsheets and
company product catalogs;

Text mining of documents to find candidate terms for
concepts and relations;

Terminologies, lexicons, and glossaries;

Wisdom of the crowds tagging, tagging games, and
folksonomies;

11/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Bottom-up development

Reuse of other knowledge-based representations:
conceptual data models (UML diagrams, ER, and ORM)

Database (and OO) reverse engineering, and least common
subsumer and clustering to infer new concepts;

Abstractions from or formalisations of models in textbooks
and diagram-based software;

Thesauri and other structured vocabularies;

Other (semi-)structured data, such as spreadsheets and
company product catalogs;

Text mining of documents to find candidate terms for
concepts and relations;

Terminologies, lexicons, and glossaries;

Wisdom of the crowds tagging, tagging games, and
folksonomies;

11/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Bottom-up development

Reuse of other knowledge-based representations:
conceptual data models (UML diagrams, ER, and ORM)

Database (and OO) reverse engineering, and least common
subsumer and clustering to infer new concepts;

Abstractions from or formalisations of models in textbooks
and diagram-based software;

Thesauri and other structured vocabularies;

Other (semi-)structured data, such as spreadsheets and
company product catalogs;

Text mining of documents to find candidate terms for
concepts and relations;

Terminologies, lexicons, and glossaries;

Wisdom of the crowds tagging, tagging games, and
folksonomies;

11/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Bottom-up development

Reuse of other knowledge-based representations:
conceptual data models (UML diagrams, ER, and ORM)

Database (and OO) reverse engineering, and least common
subsumer and clustering to infer new concepts;

Abstractions from or formalisations of models in textbooks
and diagram-based software;

Thesauri and other structured vocabularies;

Other (semi-)structured data, such as spreadsheets and
company product catalogs;

Text mining of documents to find candidate terms for
concepts and relations;

Terminologies, lexicons, and glossaries;

Wisdom of the crowds tagging, tagging games, and
folksonomies;

11/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Bottom-up development

Reuse of other knowledge-based representations:
conceptual data models (UML diagrams, ER, and ORM)

Database (and OO) reverse engineering, and least common
subsumer and clustering to infer new concepts;

Abstractions from or formalisations of models in textbooks
and diagram-based software;

Thesauri and other structured vocabularies;

Other (semi-)structured data, such as spreadsheets and
company product catalogs;

Text mining of documents to find candidate terms for
concepts and relations;

Terminologies, lexicons, and glossaries;

Wisdom of the crowds tagging, tagging games, and
folksonomies;

11/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Languages – preliminary considerations

Depending on the purpose(s) (and available resources), one
ends up with either

(a) a large but simple ontology, i.e., mostly just a taxonomy
without, or very few, properties (relations) linked to the
concepts, where ‘large’ is, roughly, > 10000 concepts, so that
a simple representation language suffices;

(b) a large and elaborate ontology, which includes rich usage of
properties, defined concepts, and, roughly, requiring OWL-DL;
or

(c) a small and very complex ontology, where ‘small’ is, roughly, <
250 concepts, and requiring at least OWL 2 DL

Certain choices for reusing ontologies or legacy material, or
goal, may lock one a language

⇒ Separate dimension that interferes with the previous
parameters: the choice for a representation language

12/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Languages – preliminary considerations

Depending on the purpose(s) (and available resources), one
ends up with either

(a) a large but simple ontology, i.e., mostly just a taxonomy
without, or very few, properties (relations) linked to the
concepts, where ‘large’ is, roughly, > 10000 concepts, so that
a simple representation language suffices;

(b) a large and elaborate ontology, which includes rich usage of
properties, defined concepts, and, roughly, requiring OWL-DL;
or

(c) a small and very complex ontology, where ‘small’ is, roughly, <
250 concepts, and requiring at least OWL 2 DL

Certain choices for reusing ontologies or legacy material, or
goal, may lock one a language

⇒ Separate dimension that interferes with the previous
parameters: the choice for a representation language

12/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Languages

Older KR languages (frames, obo, conceptual graphs, etc.)
Web Ontology Languages:

OWL: OWL-Lite, OWL-DL, OWL full
OWL 2 with 4 languages to tailor the choice of ontology
language to fit best with the usage scope in the context of a
scalable and multi-purpose SW:

OWL 2 DL is most expressive and based on the DL language
SROIQ
OWL 2 EL fragment to achieve better performance with larger
ontologies (e.g., for use with SNOMED-CT)
OWL 2 QL fragment to achieve better performance with
ontologies linked to large amounts of data in secondary
storage (databases); e.g. DIG-QuOnto
OWL 2 RL has special features to handle rules

Extensions (probabilistic, fuzzy, temporal, etc.)

Differences between expressiveness of the ontology languages
and their trade-offs

13/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Languages

Older KR languages (frames, obo, conceptual graphs, etc.)
Web Ontology Languages:

OWL: OWL-Lite, OWL-DL, OWL full
OWL 2 with 4 languages to tailor the choice of ontology
language to fit best with the usage scope in the context of a
scalable and multi-purpose SW:

OWL 2 DL is most expressive and based on the DL language
SROIQ
OWL 2 EL fragment to achieve better performance with larger
ontologies (e.g., for use with SNOMED-CT)
OWL 2 QL fragment to achieve better performance with
ontologies linked to large amounts of data in secondary
storage (databases); e.g. DIG-QuOnto
OWL 2 RL has special features to handle rules

Extensions (probabilistic, fuzzy, temporal, etc.)

Differences between expressiveness of the ontology languages
and their trade-offs

13/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Languages

Older KR languages (frames, obo, conceptual graphs, etc.)
Web Ontology Languages:

OWL: OWL-Lite, OWL-DL, OWL full
OWL 2 with 4 languages to tailor the choice of ontology
language to fit best with the usage scope in the context of a
scalable and multi-purpose SW:

OWL 2 DL is most expressive and based on the DL language
SROIQ
OWL 2 EL fragment to achieve better performance with larger
ontologies (e.g., for use with SNOMED-CT)
OWL 2 QL fragment to achieve better performance with
ontologies linked to large amounts of data in secondary
storage (databases); e.g. DIG-QuOnto
OWL 2 RL has special features to handle rules

Extensions (probabilistic, fuzzy, temporal, etc.)

Differences between expressiveness of the ontology languages
and their trade-offs

13/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Reasoning services

Description logics-based reasoning services

The standard reasoning services for ontology usage:
satisfiability and consistency checking, taxonomic
classification, instance classification;
‘Non-standard’ reasoning services to facilitate ontology
development: explanation/justification, glass-box reasoning,
pin-pointing errors, least-common subsumer;
Querying functionalities, such as epistemic and (unions of)
conjunctive queries;

Ontological reasoning services (OntoClean, RBox reasoning
service)

Other technologies (e.g., Bayesian networks)

14/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

15/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Outline

1 Parameters and dependencies

2 Example methods: OntoClean and Debugging
Guidance for modelling: OntoClean
Debugging ontologies

3 Methodologies and tools
Macro-level methodologies
Micro-level methodologies
Tools

16/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Guidance for modelling: OntoClean

OntoClean overview

Problem: messy taxonomies on what subsumes what

How to put them in the right order?

OntoClean provides guidelines for this (see to Guarino & Welty, 2004 for an

extended example)

Based on philosophical principles, such as identity and rigidity
(see Guarino & Welty’s EKAW’00 and ECAI’00 papers for more information on the basics)

17/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Guidance for modelling: OntoClean

OntoClean overview

Problem: messy taxonomies on what subsumes what

How to put them in the right order?

OntoClean provides guidelines for this (see to Guarino & Welty, 2004 for an

extended example)

Based on philosophical principles, such as identity and rigidity
(see Guarino & Welty’s EKAW’00 and ECAI’00 papers for more information on the basics)

17/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Guidance for modelling: OntoClean

Basics

A property of an entity is essential to that entity if it must be
true of it in every possible world, i.e. if it necessarily holds for
that entity.

Special form of essentiality is rigidity

Definition (+R)

A rigid property φ is a property that is essential to all its instances,
i.e., ∀xφ(x)→ �φ(x).

Definition (-R)

A non-rigid property φ is a property that is not essential to some
of its instances, i.e., ∃xφ(x) ∧ ¬�φ(x).

18/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Guidance for modelling: OntoClean

Basics

Definition (∼R)

An anti-rigid property φ is a property that is not essential to all its
instances, i.e., ∀xφ(x)→ ¬�φ(x).

Definition (¬R)

A semi-rigid property φ is a property that is non-rigid but not
anti-rigid.

Anti-rigid properties cannot subsume rigid properties

19/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Guidance for modelling: OntoClean

Basics

Identity: being able to recognize individual entities in the
world as being the same (or different)

Unity: being able to recognize all the parts that form an
individual entity; e.g., ocean carries unity (+U), legal agent
carries no unity (-U), and amount of water carries anti-unity
(“not necessarily wholes”, ∼U)

Identity criteria are the criteria we use to answer questions
like, “is that my dog?”

Identity criteria are conditions used to determine equality
(sufficient conditions) and that are entailed by equality
(necessary conditions)

20/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Guidance for modelling: OntoClean

Basics

Identity: being able to recognize individual entities in the
world as being the same (or different)

Unity: being able to recognize all the parts that form an
individual entity; e.g., ocean carries unity (+U), legal agent
carries no unity (-U), and amount of water carries anti-unity
(“not necessarily wholes”, ∼U)

Identity criteria are the criteria we use to answer questions
like, “is that my dog?”

Identity criteria are conditions used to determine equality
(sufficient conditions) and that are entailed by equality
(necessary conditions)

20/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Guidance for modelling: OntoClean

Basics

Identity: being able to recognize individual entities in the
world as being the same (or different)

Unity: being able to recognize all the parts that form an
individual entity; e.g., ocean carries unity (+U), legal agent
carries no unity (-U), and amount of water carries anti-unity
(“not necessarily wholes”, ∼U)

Identity criteria are the criteria we use to answer questions
like, “is that my dog?”

Identity criteria are conditions used to determine equality
(sufficient conditions) and that are entailed by equality
(necessary conditions)

20/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Guidance for modelling: OntoClean

Basics

Identity: being able to recognize individual entities in the
world as being the same (or different)

Unity: being able to recognize all the parts that form an
individual entity; e.g., ocean carries unity (+U), legal agent
carries no unity (-U), and amount of water carries anti-unity
(“not necessarily wholes”, ∼U)

Identity criteria are the criteria we use to answer questions
like, “is that my dog?”

Identity criteria are conditions used to determine equality
(sufficient conditions) and that are entailed by equality
(necessary conditions)

20/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Guidance for modelling: OntoClean

Basics

Definition

A non-rigid property carries an IC Γ iff it is subsumed by a rigid
property carrying Γ.

Definition

A property φ supplies an IC Γ iff i) it is rigid; ii) it carries Γ; and
iii) Γ is not carried by all the properties subsuming φ. This means
that, if φ inherits different (but compatible) ICs from multiple
properties, it still counts as supplying an IC.

Any property carrying an IC: +I (-I otherwise).

Any property supplying an IC: +O (-O otherwise); “O” is a
mnemonic for “own identity”

+O implies +I and +R

21/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Guidance for modelling: OntoClean

Formal ontological property classifications

 
 
 

 
+D+O +I +R -D Type 

+D-O +I +R -D Quasi-Type 

-O +I ~R +D Material role 
-O +I ~R -D Phased sortal

+D-O +I ¬R -D Mixin 

Sortal 

+D-O -I +R -D Category 

-O -I ~R +D Formal role 
~R -D 

+D-O -I 
¬R -D 

Attribution 

Non-Sortal

 
 

22/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Guidance for modelling: OntoClean

Formal ontological property classifications

Sortal
Non-rigid

Mixin

Phased sortal
Caterpillar, Chrysalis, Butterfly (for Papilionoidae)

Rigid

Type
Cat, Chair

Quasi-type
Herbivore

Property

Role

Anti-rigid
Material role
Student, Food

Non-sortal

Formal role
Recipient

Attribution
Blue, Spherical

Category
Endurant, Abstract entity

23/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Guidance for modelling: OntoClean

Basic rules

Given two properties, p and q, when q subsumes p the
following constraints hold:

1. If q is anti-rigid, then p must be anti-rigid
2. If q carries an IC, then p must carry the same IC
3. If q carries a UC, then p must carry the same UC
4. If q has anti-unity, then p must also have anti-unity

5. Incompatible IC’s are disjoint, and Incompatible UC’s are
disjoint

And, in shorthand:

6. +R 6⊂∼ R
7. −I 6⊂ +I
8. −U 6⊂ +U
9. +U 6⊂∼ U

10. −D 6⊂ +D

24/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Guidance for modelling: OntoClean

Example: before

25/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Guidance for modelling: OntoClean

Example: after

26/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Debugging ontologies

Overview

Domain experts are expert in their subject domain, which is
not logic

Modellers often do not understand the subject domain well

The more expressive the language, the easier it is to make
errors or bump into unintended entailments

Simple languages can represent more than it initially may
seem (by some more elaborate encoding), which clutters the
ontology and affects comprehension

In short: people make errors (w.r.t. their intentions) in the
modelling task, and automated reasoners can help fix that

27/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Debugging ontologies

Overview

Domain experts are expert in their subject domain, which is
not logic

Modellers often do not understand the subject domain well

The more expressive the language, the easier it is to make
errors or bump into unintended entailments

Simple languages can represent more than it initially may
seem (by some more elaborate encoding), which clutters the
ontology and affects comprehension

In short: people make errors (w.r.t. their intentions) in the
modelling task, and automated reasoners can help fix that

27/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Debugging ontologies

Overview

Domain experts are expert in their subject domain, which is
not logic

Modellers often do not understand the subject domain well

The more expressive the language, the easier it is to make
errors or bump into unintended entailments

Simple languages can represent more than it initially may
seem (by some more elaborate encoding), which clutters the
ontology and affects comprehension

In short: people make errors (w.r.t. their intentions) in the
modelling task, and automated reasoners can help fix that

27/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Debugging ontologies

Overview

Domain experts are expert in their subject domain, which is
not logic

Modellers often do not understand the subject domain well

The more expressive the language, the easier it is to make
errors or bump into unintended entailments

Simple languages can represent more than it initially may
seem (by some more elaborate encoding), which clutters the
ontology and affects comprehension

In short: people make errors (w.r.t. their intentions) in the
modelling task, and automated reasoners can help fix that

27/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Debugging ontologies

Overview

Domain experts are expert in their subject domain, which is
not logic

Modellers often do not understand the subject domain well

The more expressive the language, the easier it is to make
errors or bump into unintended entailments

Simple languages can represent more than it initially may
seem (by some more elaborate encoding), which clutters the
ontology and affects comprehension

In short: people make errors (w.r.t. their intentions) in the
modelling task, and automated reasoners can help fix that

27/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Debugging ontologies

Overview

Using automated reasoners for ‘debugging’ ontologies,
requires one to know about reasoning services

Using standard reasoning services

New reasoning services tailored to pinpointing the errors and
explaining the entailments

28/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Debugging ontologies

Common errors

Unsatisfiable classes

In the tools: the unsatisfiable classes end up as direct subclass
of owl:Nothing
Sometimes one little error generates a whole cascade of
unsatisfiable classes

Satisfiability checking can cause rearrangement of the class
tree and any inferred relationships to be associated with a
class definition: ‘desirable’ vs. ‘undesireable’ inferred
subsumptions

Inconsistent ontologies: all classes taken together unsatisfiable

29/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Debugging ontologies

Common errors

Unsatisfiable classes

In the tools: the unsatisfiable classes end up as direct subclass
of owl:Nothing
Sometimes one little error generates a whole cascade of
unsatisfiable classes

Satisfiability checking can cause rearrangement of the class
tree and any inferred relationships to be associated with a
class definition: ‘desirable’ vs. ‘undesireable’ inferred
subsumptions

Inconsistent ontologies: all classes taken together unsatisfiable

29/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Debugging ontologies

Common errors

Unsatisfiable classes

In the tools: the unsatisfiable classes end up as direct subclass
of owl:Nothing
Sometimes one little error generates a whole cascade of
unsatisfiable classes

Satisfiability checking can cause rearrangement of the class
tree and any inferred relationships to be associated with a
class definition: ‘desirable’ vs. ‘undesireable’ inferred
subsumptions

Inconsistent ontologies: all classes taken together unsatisfiable

29/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Debugging ontologies

Common errors

Basic set of clashes for concepts (w.r.t. tableaux algorithms)
are:

Atomic: An individual belongs to a class and its complement
Cardinality: An individual has a max cardinality restriction but
is related to more distinct individuals
Datatype: A literal value violates the (global or local) range
restrictions on a datatype property

Basic set of clashes for KBs (ontology + instances) are:

Inconsistency of assertions about individuals, e.g., an individual
is asserted to belong to disjoint classes or has a cardinality
restriction but related to more individuals
Individuals related to unsatisfiable classes
Defects in class axioms involving nominals (owl:oneOf, if
present in the language)

30/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Debugging ontologies

Common errors

Basic set of clashes for concepts (w.r.t. tableaux algorithms)
are:

Atomic: An individual belongs to a class and its complement
Cardinality: An individual has a max cardinality restriction but
is related to more distinct individuals
Datatype: A literal value violates the (global or local) range
restrictions on a datatype property

Basic set of clashes for KBs (ontology + instances) are:

Inconsistency of assertions about individuals, e.g., an individual
is asserted to belong to disjoint classes or has a cardinality
restriction but related to more individuals
Individuals related to unsatisfiable classes
Defects in class axioms involving nominals (owl:oneOf, if
present in the language)

30/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Outline

1 Parameters and dependencies

2 Example methods: OntoClean and Debugging
Guidance for modelling: OntoClean
Debugging ontologies

3 Methodologies and tools
Macro-level methodologies
Micro-level methodologies
Tools

31/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Where are we?

Parameters that affect ontology development, such as
purpose, base material, language

Methods, such as reverse engineering text mining to start,
OntoClean to improve

Tools to model, to reason, to debug, to integrate, to link to
data

Methodologies that are coarse-grained, i..e, a macro-level,
processual information systems perspective; they do not (yet)
contain all the permutations at each step, i.e. what and how
to do each step, given the recent developments;

e.g. step x is “knowledge acquisition”, but what are it
component-steps?

32/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Where are we?

Parameters that affect ontology development, such as
purpose, base material, language

Methods, such as reverse engineering text mining to start,
OntoClean to improve

Tools to model, to reason, to debug, to integrate, to link to
data

Methodologies that are coarse-grained, i..e, a macro-level,
processual information systems perspective; they do not (yet)
contain all the permutations at each step, i.e. what and how
to do each step, given the recent developments;

e.g. step x is “knowledge acquisition”, but what are it
component-steps?

32/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Macro-level methodologies

Example methodology: Methontology

Basic methodological steps:

specification: why, what are its intended uses, who are the
prospective users
conceptualization, with intermediate representations
formalization (transforms the domain-expert understandable
‘conceptual model’ into a formal or semi-computable model)
implementation (represent it in an ontology language)
maintenance (corrections, updates, etc)

Additional tasks:

Management activities (schedule, control, and quality
assurance)
Support activities (knowledge acquisition, integration,
evaluation, documentation, and configuration management)

Applied to chemical, legal domain, and others (More comprehensive

assessment of extant methodologies in Corcho et al, 2003)

33/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Macro-level methodologies

Example methodology: Methontology

Basic methodological steps:

specification: why, what are its intended uses, who are the
prospective users
conceptualization, with intermediate representations
formalization (transforms the domain-expert understandable
‘conceptual model’ into a formal or semi-computable model)
implementation (represent it in an ontology language)
maintenance (corrections, updates, etc)

Additional tasks:

Management activities (schedule, control, and quality
assurance)
Support activities (knowledge acquisition, integration,
evaluation, documentation, and configuration management)

Applied to chemical, legal domain, and others (More comprehensive

assessment of extant methodologies in Corcho et al, 2003)

33/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Macro-level methodologies

Example methodology: Methontology

Basic methodological steps:

specification: why, what are its intended uses, who are the
prospective users
conceptualization, with intermediate representations
formalization (transforms the domain-expert understandable
‘conceptual model’ into a formal or semi-computable model)
implementation (represent it in an ontology language)
maintenance (corrections, updates, etc)

Additional tasks:

Management activities (schedule, control, and quality
assurance)
Support activities (knowledge acquisition, integration,
evaluation, documentation, and configuration management)

Applied to chemical, legal domain, and others (More comprehensive

assessment of extant methodologies in Corcho et al, 2003)

33/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Macro-level methodologies

Generalisation

Figure: Main tasks in ontology engineering (Source: Simperl10)

34/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Macro-level methodologies

MOdelling wiKI

MoKi is based on a SemanticWiki, which is used for
collaborative and cooperative ontology development

It enables actors with different expertise to develop an
“enterprise model”1: use both structural (formal) descriptions
and more informal and semi-formal descriptions of knowledge

⇒ access to the enterprise model at different levels of
formality: informal, semi-formal and formal

more info and demo at http://moki.fbk.eu

1
enterprise model: “a computational representation of the structure, activities, processes, information,

resources, people, behavior, goals, and constraints of a business, government, or other enterprise”

35/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Macro-level methodologies

MOdelling wiKI

MoKi is based on a SemanticWiki, which is used for
collaborative and cooperative ontology development

It enables actors with different expertise to develop an
“enterprise model”1: use both structural (formal) descriptions
and more informal and semi-formal descriptions of knowledge

⇒ access to the enterprise model at different levels of
formality: informal, semi-formal and formal

more info and demo at http://moki.fbk.eu

1
enterprise model: “a computational representation of the structure, activities, processes, information,

resources, people, behavior, goals, and constraints of a business, government, or other enterprise”

35/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Macro-level methodologies

Extending the methodologies

Methontology, MoKi, and others (e.g., On-To-Knowledge,
KACTUS approach) are for developing one single ontology

Changing landscape in ontology development towards building
“ontology networks”

Characteristics: dynamics, context, collaborative, distributed

E.g., the emerging NeOn methodology

36/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Macro-level methodologies

Extending the methodologies

Methontology, MoKi, and others (e.g., On-To-Knowledge,
KACTUS approach) are for developing one single ontology

Changing landscape in ontology development towards building
“ontology networks”

Characteristics: dynamics, context, collaborative, distributed

E.g., the emerging NeOn methodology

36/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Macro-level methodologies

Extending the methodologies: NeOn

NeOn’s “Glossary of Activities” identifies and defines 55
activities when ontology networks are collaboratively built

Among others: ontology localization, -alignment,
-formalization, -diagnosis, -enrichment etc.

Divided into a matrix with “required” and “if applicable”

Embedded into a comprehensive methodology (under
development) that

Recognises there are several scenarios for ontology
development, i.e., refining the typical monolithic ‘waterfall’
approach

(more info in neon 2008 d5.4.1.pdf)

37/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Macro-level methodologies

Several scenarios for Building Ontology Networks

38/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Micro-level methodologies

Micro-level methodologies

Guidelines detailing how to go from informal to logic-based
representations with instructions how to include the axioms
and which ones are better than others

To represent the formal and ontological details in an
expressive ontology beyond just classes and some of their
relationships so as to include guidance also for the axioms and
ontological quality criteria

Notably: OntoSpec and the “Ontology development 101”

39/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Micro-level methodologies

More detailed steps (generalised from DiDOn)

1. Requirements analysis, regarding expressiveness (temporal,
fuzzy, n-aries etc.), types of queries, reasoning services needed;

2. Design an ontology architecture, such as modular, and if so,
in which way, distributed or not, etc.

3. Choose principal representation language and consider
encoding peculiarities;

40/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Micro-level methodologies

A few basic hints for choosing a language

Is reasoning 
required?

Only data 
annotation?

Text 
annotation?

Expressivity 
is important?

Use OWL (2) DL

Use OWL 2 EL

Use OBO 
or OWL 2 EL

Use SKOS, OBO, or 
OWL 2 EL

No

Yes

Decidability is 
important?

Use any FOL, extension 
thereof, or higher order logic, 
e.g. Common Logic, DLRus

large ABox?

Use OWL 2 QL

41/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Micro-level methodologies

More detailed steps (generalised from DiDOn)

4. Formalization, including:

examine and add the classes, object properties, constraints,
rules taking into account the imported ontologies;
use an automated reasoner for debugging/anomalous
deductions;
use ontological reasoning services for quality checks
(OntoClean, RBox Compatibility);
add annotations;

5. Generate versions in other ontology languages, ‘lite’ versions,
etc, if applicable;

42/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Tools

Tools

Thus far, no tool gives you everything

WebODE to support Methontology with a software
application
Protégé with its plugins. a.o.: ontology visualisation, querying,
OBDA, etc.
NeOn toolkit with plugins
MoKi, Hozo, SWOOP, ...
RacerPro, RacerPorter. a.o.: sophisticated querying
Specialised tools for specific task, such as ontology integration
and evaluation (e.g. Protégé-PROMPT, ODEClean)
RDF-based ones, such as Sesame

Longer list and links to more lists of tools in the accompanying text and

references

43/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Tools

Tools

Thus far, no tool gives you everything

WebODE to support Methontology with a software
application
Protégé with its plugins. a.o.: ontology visualisation, querying,
OBDA, etc.
NeOn toolkit with plugins
MoKi, Hozo, SWOOP, ...
RacerPro, RacerPorter. a.o.: sophisticated querying
Specialised tools for specific task, such as ontology integration
and evaluation (e.g. Protégé-PROMPT, ODEClean)
RDF-based ones, such as Sesame

Longer list and links to more lists of tools in the accompanying text and

references

43/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Tools

Tools

Thus far, no tool gives you everything

WebODE to support Methontology with a software
application
Protégé with its plugins. a.o.: ontology visualisation, querying,
OBDA, etc.
NeOn toolkit with plugins
MoKi, Hozo, SWOOP, ...
RacerPro, RacerPorter. a.o.: sophisticated querying
Specialised tools for specific task, such as ontology integration
and evaluation (e.g. Protégé-PROMPT, ODEClean)
RDF-based ones, such as Sesame

Longer list and links to more lists of tools in the accompanying text and

references

43/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Tools

Tools

Thus far, no tool gives you everything

WebODE to support Methontology with a software
application
Protégé with its plugins. a.o.: ontology visualisation, querying,
OBDA, etc.
NeOn toolkit with plugins
MoKi, Hozo, SWOOP, ...
RacerPro, RacerPorter. a.o.: sophisticated querying
Specialised tools for specific task, such as ontology integration
and evaluation (e.g. Protégé-PROMPT, ODEClean)
RDF-based ones, such as Sesame

Longer list and links to more lists of tools in the accompanying text and

references

43/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Tools

Tools

Thus far, no tool gives you everything

WebODE to support Methontology with a software
application
Protégé with its plugins. a.o.: ontology visualisation, querying,
OBDA, etc.
NeOn toolkit with plugins
MoKi, Hozo, SWOOP, ...
RacerPro, RacerPorter. a.o.: sophisticated querying
Specialised tools for specific task, such as ontology integration
and evaluation (e.g. Protégé-PROMPT, ODEClean)
RDF-based ones, such as Sesame

Longer list and links to more lists of tools in the accompanying text and

references

43/44



Parameters and dependencies Example methods: OntoClean and Debugging Methodologies and tools Summary

Summary

1 Parameters and dependencies

2 Example methods: OntoClean and Debugging
Guidance for modelling: OntoClean
Debugging ontologies

3 Methodologies and tools
Macro-level methodologies
Micro-level methodologies
Tools

44/44


	lecture 8
	Parameters and dependencies
	Example methods: OntoClean and Debugging
	Guidance for modelling: OntoClean
	Debugging ontologies

	Methodologies and tools
	Macro-level methodologies
	Micro-level methodologies
	Tools



